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Fig. 1. SAMoSA senses a user’s activity (A) using power-efficient and privacy-sensitive low-sample-rate (≤ 1 kHz) audio
data (C) and 50 Hz IMU motion data (D). After a motion detector (B) triggers, these two sensor streams are passed to a
multimodal deep learning model (E) to predict the wearer’s activity, which can then be used to power end user applications (F).
In this work, we study the privacy/power vs. accuracy tradeoff by testing different audio subsampling rates (G).

Despite advances in audio- and motion-based human activity recognition (HAR) systems, a practical, power-efficient, and
privacy-sensitive activity recognition system has remained elusive. State-of-the-art activity recognition systems often require
power-hungry and privacy-invasive audio data. This is especially challenging for resource-constrained wearables, such as
smartwatches. To counter the need for an always-on audio-based activity classification system, we first make use of power
and compute-optimized IMUs sampled at 50 Hz to act as a trigger for detecting activity events. Once detected, we use a
multimodal deep learning model that augments the motion data with audio data captured on a smartwatch. We subsample
this audio to rates ≤ 1 kHz, rendering spoken content unintelligible, while also reducing power consumption on mobile
devices. Our multimodal deep learning model achieves a recognition accuracy of 92.2% across 26 daily activities in four indoor
environments. Our findings show that subsampling audio from 16 kHz down to 1 kHz, in concert with motion data, does not
result in a significant drop in inference accuracy. We also analyze the speech content intelligibility and power requirements
of audio sampled at less than 1 kHz and demonstrate that our proposed approach can improve the practicality of human
activity recognition systems.
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1 INTRODUCTION
Human activity recognition (HAR) has numerous applications, including real-time task assistance, automated
exercise tracking, rehabilitation, and personal informatics. Over the years, researchers have explored numerous
modalities to sense a user’s actions, and sound has proven to be a useful signal. Sounds resulting from physical
activities, such as washing one’s hands or brushing one’s teeth, are often distinctive and enable accurate HAR. For
example, Laput et al. built a model to classify sounds sampled at 16 kHz and achieved 89.6% average classification
accuracy [34]. However, sampling audio at rates between 8 and 16 kHz carries a power consumption and compute
cost. Moreover, these audio ranges capture human speech content and other sensitive information that users
might not want to have recorded.
In a bid to protect user privacy, researchers have proposed to featurize recorded data [11, 41]. If done at the

edge, featurization is considered privacy-sensitive, but it comes with considerable processing cost. Furthermore,
an always-on acoustic activity recognition system increases the power burden; especially on resource-constrained
devices such as smartwatches, where the battery cannot be made much larger. In response, we present SAMoSA -
Sensing Activities with Motion and Subsampled Audio. Our approach first uses power- and compute-optimized
IMUs sampled at 50 Hz to act as a trigger for detecting the start of activities of interest. IMUs are ubiquitous, are
heavily engineered for efficiency, and numerous prior works have shown the effectiveness of IMU data to detect
user activities [6, 31, 35, 36, 60]. Once we detect the start of an activity using an IMU, we use a multimodal model
that combines motion and audio data for classifying the activity (Figure 1). To further minimize the computation
cost of processing audio data, we reduce the sampling rates to ≤ 1 kHz. Subsampling can be implemented directly
and easily at the hardware level; i.e., instead of post-processing fast-sampled audio data (e.g., 44 kHz), the sensor
is directly sampled at a reduced rate. This approach saves power needed to sample, move/store in memory, and
featurize the data. Our approach was partially inspired by the always-on "Measure Sounds" (loudness) feature
found on recent Apple Watch models. This software-based sensor relies on the microphone, but presumably
senses at a very low rate so as to have minimal impact on battery life. At these lower rates, human speech is also
unintelligible [5, 8, 15], thus offering a more privacy-sensitive approach.
We show in our evaluation that motion and sound signals are complementary and provide wide coverage of

numerous activities of daily living. A similar approach (albeit without subsampled audio) is reportedly used in
Apple Watch’s handwashing recognition implementation, but there is no official documentation of the approach
and its implementation. SAMoSA provides a generic, open-source approach that extends to 25 additional activities.
Overall, this paper makes the following contributions:
(1) A practical activity recognition system that uses 50 Hz IMU along with audio sampled at ≤ 1 kHz, and yet

still achieves performance comparable to models using more power-hungry and privacy-invasive 16 kHz
audio data.

(2) A comprehensive suite of experiments, quantifying the efficacy of our system across 8 audio sampling
rates, 4 contexts, 60 environments, and 26 activity classes. We also present a power consumption and a
speech intelligibility study for different audio sampling rates.

(3) A new smartwatch sensor dataset with synchronized motion and sound data. We further showcase how
our multimodal model resolves ambiguity among activities that are confused by a single modality alone.

(4) Open-sourced data, processing pipeline, and trained models to facilitate replication and further exploration
and deployment in the field.
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2 RELATED WORK
There has been extensive research done in human activity recognition (HAR) from sensors such as micro-
phones [24, 34, 38], IMUs [6, 31, 35, 36, 60], cameras [62], powerline sensors [21], plumbing sensors [16], and
various multimodal sensing approaches [1, 37, 40, 45, 49, 56, 59]. Please refer to [12, 20, 54, 57] for a detailed
survey. In this section, we situate SAMoSA in the landscape of motion- and audio-based methods, as well as
multimodal approaches for HAR.

2.1 IMU-Based Human Activity Recognition
A large number of activity recognition systems rely on inertial sensors such as accelerometers, gyroscopes, and
magnetometers present in smartphones, smartwatches and other wearables to detect human activity. Over the
years, motion-based activity recognition systems have graduated from detecting coarse human movements,
such as walking, running and biking [31, 60] to detecting more fine-grained movements such as appliance
usage [32, 36], subtle facial actions [61], and gestures [36]. These approaches include multi-device systems
such as that of Shoaib et al. [53] that use the accelerometer from a smartphone in conjunction with one from
a smartwatch to detect 13 activities, including smoking and drinking coffee. Such systems are lightweight and
typically use simple statistical features computed from the input data streams. Single wearable approaches have
also seen renewed interest with the advent of deep learning. Such approaches are computationally more expensive,
but offer higher fidelity and better accuracy. For instance, by using a wrist-worn smartwatch accelerometer
sampled at 4 kHz, Laput et al. [35] was able to detect fine-grained hand activities such as hand washing and
scratching. Ashry et al. used an online Bi-LSTM deep learning architecture for continuous activity recognition on
smartwatches [4]. We drew inspiration from these prior efforts in developing our IMU-based activity trigger and
the IMU backbone of our multimodal activity classification model.

2.2 Privacy-Sensitive Audio-Based Human Activity Recognition
Apart from speech sensing, researchers have leveraged the ubiquity of microphones to build numerous audio-
based HAR systems. Recently, with the advent of machine learning techniques that benefit from large existing
datasets, there has been widespread success in building more general-purpose HAR systems [33, 34, 42, 55, 64].
However, all of these approaches use high sampling rates (≥ 16 kHz) and are therefore more computationally
intensive and potentially more privacy invasive.
In response, researchers have explored the idea of privacy-sensitive activity recognition using audio. Lar-

son et al. [38] proposed a cough sensing technique which only reconstructed cough sounds from the audio signal,
while preventing speech from being reconstructed intelligibly. Chen et al. [11] proposed a vocalic selection
and substitution method in order to reduce the intelligibility of speech while preserving environmental sounds.
PrivacyMic [24] presented an approach using infrasonic and ultrasonic frequencies for activity recognition.
Most related to our work is that of Liang et al. [41]. They presented a privacy-aware audio sensing framework
across 15 classes for intentionally degrading audio frames by randomly replacing a subset of audio frames with
nearby frames. Similar to their approach, we also degrade the audio intentionally through subsampling (i.e.,
discarding data rather than replacing it), but safeguard against the loss of accuracy by using a multimodal learning
framework (we also expand our activity set to 26 classes).

2.3 Multimodal Human Activity Recognition
Multimodal deep learning systems have seen widespread adoption in computer vision communities for tasks
such as image captioning [3, 13, 25, 44], pose estimation [2, 51], and autonomous driving [9, 10]. Similarly, in
recent years, human activity recognition has also seen an increased adoption of similar multimodal classification
techniques [1, 19, 40, 45, 56, 59].
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Fig. 2. SAMoSA is a human activity recognition system that uses IMU motion data sampled at 50 Hz and sound sampled at
≤ 1 kHz. The figure showcases the 26 different activities (with associated contexts) that our system can recognize, along with
sound spectrograms (log scale, with 1 Khz cutoff denoted with a solid white line) and 3-Axis accelerometer streams.

Laput et al. [37] used a sensor board containing 9 sensors (accelerometer, magnetometer, light illumination,
microphone, etc.) to create sensor-fusion powered "Synthetic Sensors" for a variety of context-sensitive applica-
tions. Radu et al. presented a case study of different challenges and approaches to multimodal deep learning for
human activity recognition [49]. FingerSound [68] used sound and gyroscope data from a finger mounted ring
to classify finger gestures. In Lukowizc et al. [43], the fusion of audio and IMU sensor data from multiple body
worn sensors was used to detect a range of workshop activities. Most related to our present work are GestEar [7]
and Ward et al. [63]. In GestEar, Becker et al. proposed the use of sound and motion from a smartwatch for
gesture classification (e.g., snapping, knocking, clapping). Similarly, Ward et al. proposed the use of multiple
arm mounted microphones and accelerometers in order to classify assembly tasks [63]. In contrast to the latter
systems, SAMoSA uses a commodity smartwatch, and thus constitutes a significant step forward in practicality
and potential reach (e.g., could be deployed with an over-the-air software update to even existing smartwatches).
Moreover, our system detects an expanded set of events/activities compared to prior work.

3 DATASET
To initiate our investigations, we needed a labeled dataset with synchronized human motion and sound captured
by a wrist-worn device. Such a multimodal dataset does not exist in the literature, and thus we collected our own.

3.1 Example Contexts and Activities
Rather than develop a new set of activities to study, we drew our example contexts and activities from highly
related prior work [34, 35, 55]. From these papers, we selected activities that are general and usually produce
motion or sound when performed. This meant that environmental sounds such as "baby crying" and "dog barking"
found in some prior work (e.g., [34]) were not included. Similar to [34], we also wished to balance our activities
across different user contexts, and ultimately chose kitchen, bathroom, workshop, and miscellaneous. We binned
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our final set of 26 activities into these four contexts (Figure 2). As discussed later, we also recorded speech and
transitional data between activities to act as a 27th Other class.

3.2 Data Capture
We collected data using a Fossil Gen 5 smartwatch running Google Android wearOS 2.23. We developed a custom
wearOS app to collect and save/stream synchronized streams of the 9-axis IMU data (accelerometer, gyroscope
and orientation) at 50 Hz and uncompressed audio at 16 kHz. Post hoc, we downsample the audio data into seven
additional target rates (125, 250, 500, 1k, 2k, 4k, 8k Hz) for building our models and subsequent analyses. For
this, we first subsample our 16 kHz audio signals to the desired target sampling rate by applying an nth order
subsampling scheme, wherein we simply keep every nth sample and discard the rest. This closely mimics the
subsampling scheme implemented in hardware.

3.3 Data Collection Procedure
We collected in-the-wild audio and inertial data from 20 participants (mean age 23.3, all right-handed) across 60
environments of varying use. We collected data in participants’ homes with their appliances and tools. We only
provided appliances in case they did not have a particular item (e.g., not every participant had a handheld power
drill). Participants performed activities belonging to a particular context in the location where they would most
likely occur (e.g., toothbrushing in the bathroom, chopping in the kitchen) to incorporate associated context
background noise profiles (for example, ambient HVAC, water flowing through the pipes in the bathroom, etc.).
Participants wore the smartwatch on their dominant arm. Each participant was asked to perform 26 activities
across 4 contexts (Figure 2), with each activity repeated 3 times within each context. Participants were asked to
perform these activities as they normally would and were given no further instructions. We encouraged them to
use their own objects to perform the activities when applicable to increase variance in the data. In addition to
the 26 activities, we also collected data for speech and when users were transitioning between activities. These
instances acted as the Other class in order to test SAMoSA’s motion-based event detector. In total, this procedure
took about 90 minutes and each participant was compensated $20 USD for their time.
During data collection, we followed the best practices described in [30]. A trained experimenter oversaw the

entire data collection and also acted as the activity annotator. First, a context was chosen at random, and then the
trials of all the activities pertaining to that context were randomized. For example, in the workshop context, the
15 trials (5 activities × 3 repetitions per activity) were requested in a random order. This process was repeated
until all the contexts were completed. For activities involving the use of an object (e.g., hammer or hair dryer),
each trial began with the participant picking up the object, performing the activity for a certain duration (ranging
between 30 and 60 seconds) and then placing the object back down. Participants were not given explicit activity
instructions on how to interact with the object and this led to useful variances in the data. For activities devoid of
any objects (e.g., laughing or clapping), the participants were simply asked to perform them. The experimenter
annotated the start and end of each trial. All the data between the trials and the transition data was labeled as
Other. In total, we have 14.2 hours of data across all participants. The dataset contains 5.9 hours of labeled activity
data and 8.3 hours of in-transition Other data.

4 SYSTEM
The overall SAMoSA system architecture is illustrated in Figure 3. We start by first detecting activity events using
only IMU motion data (Section 4.1). For this, we employ a lightweight Random Forest based model. Once the
onset of an activity is detected, we trigger a multimodal deep learning model (Section 4.2). This model classifies
the activity and further detects the end of the activity segment. Initially, the multimodal model is unaware of
the activity context, meaning all 26 activity classes are applicable. However, if a sequence of activities that are
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Fig. 3. Overview of SAMoSA’s System Architecture.

inferred are consistent with a single context, our model will switch to a context-specific classifier (Section 4.3),
which improves accuracy.

4.1 IMU-based Event Detector
4.1.1 Data Preprocessing. The first step of our pipeline is to preprocess our 9-axis IMU motion data (acceleration,
rotational velocity, and orientation data across the 𝑥 , 𝑦, and 𝑧 axes). The smartwatch app logs orientation in
a quaternion representation, which we convert to a rotation vector. Motion signals are then segmented into
overlapping windows 2 seconds in duration with a stride of 200 ms. At 50 Hz sampling, this translates to an input
array of 100 samples × 9 IMU values. Values are normalized between the ranges −1 and 1. This constitutes one
motion instance, which are generated every 200 ms (i.e., 5 Hz).

4.1.2 Featurization and Model. Prior works have explored several ways to extract features from IMU data, such
as creating spectrograms [35], extracting statistical features [6, 36, 50], or extracting temporal features using a
1D CNN [14, 39, 66, 67]. In order to create a lightweight activity detection module, we employ a Random Forest
Classifier trained on statistical features computed from the preprocessed IMU data stream. We extract 8 statistical
features (mean, standard deviation, max, min, median, variance, skew, and kurtosis) for each of the 9 IMU values
in each motion instance, resulting in a feature vector of size 72 (9 × 8). We choose these features due to their
minimal computational cost for an always-on activity event detector. For the machine learning model, we use a
Random Forest Classifier with 100 trees and a maximum tree depth of 10. The model was built using Scikit-Learn
RandomForestClassifier [48], with a fixed random state and balanced class weights.

4.2 Multimodal Activity Classifier
4.2.1 Data Preprocessing. Our IMU data stream is already preprocessed as described in Section 4.1.1. Once the
onset of an activity is detected, we preprocess the audio data. For this, we follow the method employed in [22].
We first run a short-time Fourier Transform (STFT) (window length 600 ms, stride of 30 ms) on the audio signal
and then convert the resultant linear spectrogram into a 64-bin log-scaled Mel spectrogram. This always results
in an audio instance of size 96× 64× 1 (approximately 3 seconds of audio data) regardless of the audio’s sampling
rate (which we vary from 125 Hz to 16 kHz, described in detail later). Also, regardless of audio sampling rate, we
generate combined motion+audio data instances at 5 Hz (matching the output rate of our motion instances). We
discard phase data, further obfuscating the audio content.
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Fig. 4. Overview of SAMoSA’s multimodal deep learning architecture. The model takes in a log-mel audio spectrogram along
with a 9-DoF IMU motion instance as inputs to predict the activity. The sound modality is highlighted in blue and the motion
modality is in red. The output (green) is the prediction probabilities for the 27 example classes.

4.2.2 Learning Architecture. Our multimodal deep learning model combines motion and audio data. To test the
efficacy of each modality, we train three separate models: one for each data modality - motion, audio, and a third
multimodal model that combines the two signals, which we now describe.
For the motion-only model, we employed a 1D CNN to learn temporal features from raw IMU data. A model

overview can be seen in the IMU backbone (depicted in red) in Figure 4. The architecture consists of four 1D
convolutional layers (kernel size = 10, stride = 1, depths = 128, 128, 256, 256, ReLU activation [46]) interspersed
with batch normalization [23] and max pooling layers (pool size = 2), followed by a dropout layer (p = 0.5) to
help with regularization. This creates a 2816 wide motion embedding which we feed into three fully connected
dense layers and a final classification layer with sigmoid activations.

For the audio-onlymodel, we build upon the VGG-16 architecture presented by Laput et al. [34]. The architecture
(sound backbone depicted in blue in Figure 4) consists of four 2D convolutional layers (kernel size = 3 × 3, stride
= 2, depths = 64, 128, 256, 512, ReLU activation) interspersed with max pooling layers. We replace the final fully
connected classification layer with our own fully connected classification layer using sigmoid activations.
Finally, our multimodal model has two input backbones (Figure 4) resembling the feature extractors of each

individual sensing modality, namely motion and audio. We chose to keep this similarity between models to enable
a fair performance comparison between the different sensing modalities. The embeddings of each modality are
fused together through a concatenation layer, before being fed into a set of fully connected dense layers (1000, 500
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and 250 nodes, ReLU activation) and a dropout layer (p = 0.5). As with the other models, we add a final sigmoid
activated classification layer.

4.2.3 Training Protocol. Our models were built using TensorFlow 2.3. We used the Adam [27] optimizer with a
learning rate scheduler (ReduceLROnPlateau) with a starting learning rate of 0.001. Our audio model’s backbone
waswarm-startedwithweights from themodel released by Laput et al. [34]. As themotion data was kept consistent
at 50 Hz and the audio input was binned into a log-mel spectogram, we used the same model architecture for
different audio sampling rates. We checkpointed our models against training loss and stop training if the loss did
not improve for 5 epochs. We found that given the small size of our dataset, checkpointing against training loss
often resulted in the optimizer finding a more stable minima. Rather than training different models per-context,
we train a single model across all our 27 classes (including the “other” class). For each context, we only look at
the prediction confidences of classes pertaining to that context. A prediction is labeled as “other” if it belongs to
the "other" class or has a confidence lower than the threshold for that context. This "other" class denotes the end
of a given activity segment. Training was performed on an Nvidia Titan X GPU and took approximately 5 hrs
(0.25 hrs per LOPO model) to train the multimodal CNNs.

4.3 Automatic Context Detector
In many cases, the context can be detected using other sensors on a smartwatch (e.g., location of the device as
inferred via WiFi or Bluetooth, or proximity to a fixed paired device like a smart speaker). However, this prior
knowledge of the context may not always be available. In such cases, context could be inferred using the sound
and motion data itself. We use the activities predicted by the SAMoSA model across time to detect the context.
Specifically, we use a rolling window of 30 data instances, with each inference casting a vote for a specific context.
The model selectively activates outputs for the winning context, typically improving stability and accuracy.

5 LIVE DEMO AND OPEN SOURCE
To create a proof-of-concept live demo, we streamed IMU and audio data captured by a smartwatch to a laptop (on
the same WiFi network) for processing. Figure 5 showcases sample predictions of our multimodal model making
use of 1 kHz audio and 50 Hz IMU, 16 kHz sound only model and 50 Hz IMU only model. Sample predictions were
only displayed on the screen when prediction confidence was above a threshold (0.7). This system runs at roughly
24 frames per second on an Apple MacBook Air laptop with M1 processor. The inference time of SAMoSA’s
Random Forest IMU event detector and multimodal activity classifier is 4.8 ms and 41.2 ms, respectively. In
the future, we envision a prototype similar to the hand washing detection feature on the Apple watch that
runs locally. This can be achieved by engineering optimizations such as model compression and floating point
quantization [17, 29].
Additionally, to enable other researchers to explore this domain, we have made our study data, architecture,

trained models and visualization tools freely available at https://github.com/cmusmashlab/SAMoSA.

6 RESULTS

6.1 Event Detector Accuracy
We evaluated our event detection model in a leave-one-participant-out (LOPO) cross validation scheme. That is,
in a given fold, we used data from 19 participants for training and tested on the remainder holdout participant.
This was repeated 20 times (all combinations, results averaged). We treated the problem as a binary classification
task, wherein all 26 labeled activity classes were binned together to signify the occurrence of an event and the
Other class included segments from when users were transitioning between activities as specified in Section 3.3.
Our Random Forest classifier made a classification (Event vs. Other) every 200 ms to detect the onset of an activity
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Fig. 5. Demo of SAMoSA running live in different contexts. Three models run concurrently for comparison, namely: the
multimodal model (1 kHz audio + 50 Hz IMU), audio-only model (16 kHz audio) and the motion-only model (50 Hz IMU).

event. Our model was able to detect events with an average balanced F1 score of 0.88 (𝑆𝐷 = 0.04). In terms of
latency, we found an average onset latency (i.e., the delay between the physical start of an event and when it
is detected by the model) of 0.62 seconds, and an average offset latency (i.e., delay between physical end of an
activity and when the model detects the termination) of 0.16 seconds. We also computed these results across
different machine learning models (refer to Appendix A.1).

6.2 Activity Recognition Accuracy
To test the efficacy of our activity recognition pipeline, we run it on our annotated activity segments. We designed
our evaluation procedure in order to systematically isolate and analyze different factors. More specifically, we
first analyze the effect of audio sampling rate on recognition accuracy. We then evaluate the efficacy of our
multimodal model that combines subsampled audio and 50 Hz IMU data across different activities and contexts.
Finally, we also evaluate the ability of our model to detect activity contexts. These are broken out into separate
sections below.
All of our activity recognition models were evaluated in a leave-one-participant-out (LOPO) cross validation

scheme. For accuracy metrics, we make use of segment level predictions, similar to clip level metrics reported
by [34]. That is, for each segment pertaining to an activity, we return the top prediction based on the cumulative
confidence of the model’s output for the classes belonging to the given context. For frame-level metrics, refer to
Appendix A.3. To improve generalizability, we do not train context dependant models, but rather train a single
model across all activities with a sigmoid activated final layer. That is each output signifies whether an activity is
occurring or not, thus modeling our classifier as a multi-label prediction rather than a multi-class classification.
This enables us to selectively look at the model’s outputs for activities present in a given context, without having
to train context-dependant models.

6.2.1 Analysis of Audio Sampling Rate on Accuracy. For each context, our accuracy across different audio sampling
rates can be seen in Figure 6 (a mean of these plots can be found in Figure 1G). As expected, the recognition
accuracy decreases in lockstep with a decrease in the audio sampling rate, especially in the region where speech
is unintelligible (light green region). Overall, the sound-only model accuracy drops from 88.0% (𝑆𝐷 = 8.6) at
16 kHz to 79.6% (𝑆𝐷 = 10.9) at 1 kHz (Figure 6, blue lines). The performance keeps dropping as the sampling
frequency goes below 1 kHz to 125 Hz. The drop in performance is the result of increased ambiguity between
classes at lower sampling rates due to lower entropy. These results also translate to the full 27-class model; we
observe the recognition accuracy decrease from 74.9% (𝑆𝐷 = 6.9) at 16 kHz to 62.1% (𝑆𝐷 = 8.2) at 1 kHz (Figure 6,
yellow lines).

6.2.2 Efficacy of Combined Motion and Audio Data. Although there is a similar decreasing trend in the per-
formance of the motion+audio model, it is comparatively slower than the audio-only model (Figure 6). For
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Fig. 6. Per-context mean classification accuracy of SAMoSA across different modalities and sound sampling rates. The IMU
data is sampled at a constant 50 Hz for all models. Motion-only model performance does not vary with audio sampling rate as
the models do not use audio data, and thus appear as flat lines (purple region illustrates standard error). The performance for
audio-based models are roughly proportional to the sampling rate. However, when augmented with motion (motion+audio),
the mean accuracy is consistently superior. Note that for improved readability, the y-axis starts at 0.4 for Mean Balanced
Accuracy. Error bars shown here are standard error.

context-independent prediction, performance drops from 89.0% (𝑆𝐷 = 5.9) at 16 kHz to 83.2% (𝑆𝐷 = 8.5) at 1 kHz
(Figure 6, far right plot). Moreover, when we average performance across all four contexts, the average perfor-
mance of SAMoSA with 1 kHz audio and 50 Hz motion is 92.2% (𝑆𝐷 = 7.9) (Figure 1G), and is marginally better
than the average classification accuracy across contexts for 16 kHz audio-only model (88.0%). Thus, SAMoSA
effectively combines motion information with low-sample-rate audio and outperforms a comparable model using
16 kHz audio. An interesting item to note from Figure 6 is that decreasing the sampling rate does not seem
to have the same effect, in terms of performance, across all the contexts. The Miscellaneous context sees the
biggest dip in accuracy when moving from 16 kHz to 1 kHz (−6.9%), while the Kitchen context sees the least drop
(−2.0%). Recognition accuracies for activities such as Pouring (J), Scratching (T), and Hand Washing (Z) suffer the
most, dropping by more than 20%, while the performances for Drilling (A), Sanding (C), and Clapping (O) remain
stable even at 1 kHz sampling rates (see confusion matrices in Figure 7). Interestingly, even at a 125 Hz audio
sampling rate, SAMoSA’s multimodal model is comparable to 16 kHz audio model and consistently outperforms
the baseline motion-only model across all contexts.
As the sampling rate of audio is reduced, the resolution of the information goes down, and more classes get

confused with one another. This is evident in Figure 7. Sound spectrograms of activities such as Hand Washing
and Toothbrush which were clearly distinguishable at 16 kHz, are much more similar below 1 kHz (Figure 8). In
such cases, IMU data can provide valuable information to remove ambiguity (Figure 8, bottom row). However, it
is important to note that motion alone cannot distinguish between different activities, as many of them have
similar motion profiles (Figure 8; see Microwave and Blender). A multimodal approach can combine the "best of
both worlds" and yield a more robust and generalizable classifier.
Inspecting the confusion matrices in Figure 7 offers some key insights. In the bathroom context, the 1 kHz

audio-only model gets confused between classes that contain similar sounds. For example, Toothbrushing (Y) and
Washing Hands (Z) get confused with each other about roughly 20% of the time, possibly due to the common
“running water” background sound. On the other hand, the multimodal model is able to effectively disambiguate
these two activities, even at a 1 kHz audio sampling rate, resulting in accuracies of 80.0% and 93.3%, respectively.
Similarly, Pouring (J) and Twisting (K) have the lowest accuracies in the kitchen context of 47.5% and 35.6%
respectively. The multimodal model boosts these to 86.2%, 76.2% respectively, which is sometimes even higher
than the accuracies observed by the 16 kHz audio-only model. Finally, in the miscellaneous context, we observe
that Drinking (Q) and Scratching (T) do not perform very well with the audio-only model (31.6% and 66.7%
accuracies respectively) as they are predominantly silent activities, but with the multimodal model, they receive
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Fig. 7. Confusion matrices of SAMoSA across different contexts. The class legend can be found in Figure 2.

a significant boost in prediction accuracy (80.0% and 85.2% respectively). We also observed this using our live
demo (Figure 5) wherein the sound model is not confident enough to make a prediction, but the multimodal one
is sufficiently confident. Taken together, these results suggest a clear benefit from adding low-sampling-rate
motion data to low-sampling-rate audio.
As noted previously, some activities have similar motion profiles. For instance, with our live demo (Figure

5, Workshop), we noticed that the motion model misclassified Hammering (B) as Vacuuming (E). This is not
surprising, as the two have very similar periodic motions (see also the confusion matrix 7 for motion). In another
instance, the prediction probability of Grating (H) did not pass the threshold for our motion-only model and
hence was not detected during the live demo (Figure 5, Kitchen). In both of these instances, the multimodal model
helped in the disambiguation of these classes.
While a large number of activities benefit from including motion data along with audio, there are certain

activities that are predominantly characterized by either audio or motion, which do not necessarily benefit from
our multimodal model. For example, in the Twisting (K) activity, which is predominantly motion-based, we see
that the motion-only model has an accuracy of 79.7% whereas the audio-only model has an accuracy of 54.2% at
16 kHz and 35.6% at 1 kHz. However, the combined multimodal model has an accuracy of 76.2%, which is only
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Fig. 8. Comparison of audio spectrogram and orientation signals across four exemplary activities. Activities with similar
1 kHz sound profiles (A and B) are distinguishable using motion. On the other hand, activities with similar motion profiles (C
and D) can leverage 1 kHz sound to remove ambiguity.

about 3% lower than the motion only model. Similar, Shaving (W) has a high accuracy of 95.0% at 16k Hz sound,
but degrades to 90.0% (similar to its accuracy at 1 kHz) in the multimodal model.

6.2.3 Automatic Context Detection. Our automatic context detectionwas also evaluated in a leave-one-participant-
out (LOPO) cross validation scheme. For a particular holdout participant, we first select 10 random activity
segments (corresponding to roughly 5 minutes of data in total) pertaining to a particular context. We randomly
stitch together these segments to form a synthetic activity sequence. We use SAMoSA’s multimodal classifier
trained on 50 Hz IMU and 1 kHz audio data from the other 19 participants to classify each instance. We record the
inferred activity’s context and take the majority vote. We repeat this process 50 times per holdout participant with
various permutations of contexts and activities. This results in a total of 1000 test combinations (20 participants
× 50 random synthetic activity sequences). The automatic context detection accuracy (all combinations, results
averaged) is 93.2% (𝑆𝐷 = 8.3).

6.3 Full Stack Accuracy
As a final experiment – and one that better simulates real world performance – we ran our entire pipeline using
the same LOPO procedure as above. Importantly, this includes the event detector as a "gate keeper" to model
execution, as well as automatic context detection. We found an instance-wise accuracy of 69.7% (𝑆𝐷 = 7.8). When
run without automatic context detection, accuracy is 62.7% (𝑆𝐷 = 7.9).

7 SUPPLEMENTAL STUDIES
We ran two supplemental studies to study the impact of audio sampling rate on microphone power consumption
and on speech intelligibility (and by extension user privacy).
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Fig. 9. Results of supplementary studies: (A) Power consumption (mW) vs. sound sampling rate of two digital MEMS
microphones. (B) Two objective intelligibility metrics: Coherence and Speech Intelligibility Index (CSII) and Normalized-
Covariance Measure (NCM) vs. sound sampling rate. (C) User study Word Error Rate (WER) vs. sound sampling rate - note
the sharp increase in the word error rate below 1 kHz Sampling Rate.

7.1 Power Consumption vs. Audio Sampling Rate
A fundamental hypothesis underpinning our approach is that reducing the sampling rate of microphones on
mobile hardware would result in power savings. Commercial-level optimization is hard to achieve in a research
paper, but we can rely on some reliable proxies to see the effect of reduced sampling. As one point of comparison,
we measured the power draw of two surface mount, digital MEMS microphones – Knowles SPH0645 [28]
and InvenSense INMP441 [58] – equivalent to those found in smartphones and smartwatches. We measured
the power draw of these microphones at varying sampling rates while transmitting data to an ESP32 board.
We found a roughly linear relationship, illustrated in Figure 9A. More specifically, for the Knowles SPH0645
microphone, power consumption at 48 kHz was 8.37 mW, falling to 5.49 mW at 2.5 kHz. For the InvenSense
INMP441 microphone, power draw fell from 23.74 mW to 6.91 mW as we lowered the sample rate from 48 kHz
to 2.5 kHz. These power savings should compound as the data moves up the stack (i.e., reduced memory and
computational overhead due to less data).

7.2 Speech Intelligibility Study
In general, the most privacy-sensitive audio data is human speech content. Prior work has suggested a number of
approaches to obfuscate audio data through various speech corruption schemes [11, 42]. We hypothesize that
removing frequency bands encapsulating human speech should also help to preserve user privacy by rendering
human speech unintelligible. While humans can hear audio frequencies ranging from roughly 20 Hz to 20 kHz,
human speech occupies a relatively narrow frequency band from 400 Hz to 8 kHz [5, 8]. Thus, audio sampled
at a rate below 800 Hz (the Nyquist rate for a 400 Hz audio signal) should theoretically render human speech
unintelligible.
To more directly assess our hypothesis, we ran a study complementing prior seminal work [5, 8, 15]. We use

objective intelligibility metrics drawn from the literature, and also recruited participants for a user study testing
speech intelligibility. The latter serves as a real-world check that metrics cannot always provide. Objective speech
intelligibility metrics such as Coherence and Speech Intelligibility Index (CSII) [26] and Normalized-Covariance
Measure (NCM) [18] compute an intelligibility index by comparing a degraded signal with the original, noise-free
signal. We compared the 96, 16 kHz sound samples with corresponding subsampled audio clips. The audio clips
were selected from the LibriSpeech dataset [47], commonly used in benchmarking speech-to-text translation
tasks. In Figure 9B, note the sharp decline in the intelligibility index (for both metrics) at around 1 kHz, as one
would predict.
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We further conducted an intelligibility study with 15 participants (self-reported native/fluent English speakers
with mean age = 24.6 years) who were tasked with transcribing 24 audio clips (a subset of the 96 from the
objective speech intelligibility study) from LibriSpeech. In this study, participants were presented with a tool that
sequentially played 24 different human speech samples at 8 different sampling rates (3 clips for each sampling
rate, ranging from 125 Hz to 16 kHz, in a randomized order). We evaluated the transcription quality using a
popular speech-to-text translation metric: Word Error Rate (WER). The average WER across 15 participants and
the eight audio sampling rates are plotted in Figure 9C. At 16 kHz we observe an WER of 6.8%, in line with prior
works [52, 65]. However, as the audio sampling rate decreases, we observe a steep increase in WER. Notably, at a
sampling rate of 1000 Hz, the word error rate is about 96%, which is in line with our hypothesis. Thus, once audio
is subsampled at rates ≤ 1 kHz, speech data is largely unintelligible and certainly helps to preserve sensitive
content.

8 LIMITATIONS AND FUTURE WORK
It is important to note that while our system has promising results, there are several limitations that will need to
be addressed before SAMoSA is ready for deployment and consumer use. Foremost, the set of 26 activities is a
small subset of the innumerable activities that occur in the real world. Future systems will either have to contend
with larger class sets or focus on specific use cases (e.g., hand washing, food intake, exercise) with robust false
positive and equal error rate. As we found in our investigations, activities that sound the same can sometimes be
separated by their motion data (and vice versa), which lends weight to multimodal approaches such as that of
SAMoSA.
While SAMoSA offers automatic context recognition, the approach has several limitations. First, activities

pertaining to the miscellaneous class can occur in any location. In such cases, rather than using rigid context
class boundaries, different activity contexts would have to be merged dynamically to create new contexts on the
fly. Furthermore, given the mobile nature of smartwatches, the context of the user could also change rapidly. In
such cases, the context would need to be recomputed after a fixed interval of time, or when a change of location
is detected through other sensors such as GPS, WiFi, or Bluetooth.
Since SAMoSA’s event trigger is motion-based, it is inherently at a disadvantage while detecting sound-only

events, such as an alarm clock. This often results in missed events, leading to degraded classification performance
(See Section 6.3). However, this is a limitation that is necessitated by the power constraints of mobile devices, and
could be rectified by designing highly-optimized, mobile-friendly activity classifiers, thus eliminating the need
for a motion-based event trigger.

Overall, SAMoSA demonstrates competitive performance (accuracy of 92.2% across our four test contexts) when
compared to prior work. However, the current results are still not sufficiently robust for immediate consumer use.
Closing the gap from 92.2% to 99.9% (which is what consumers generally expect for interactive technologies) is a
daunting challenge that will require future breakthroughs. However, there are many applications that do not need
extremely high precision and accuracy. For example, step counting is not perfectly accurate, but users can still
derive benefits from even approximate step counts. We believe that practical, deployable, and privacy-sensitive
HAR systems with less than ideal accuracies will find similar uses to step counts (e.g., mental health analysis,
longitudinal behavior tracking).
We also note that privacy lies along a spectrum, and that even our low-sample-rate data could potentially

reveal sensitive information, or in some cases, contain enough information for reconstruction. Our work is an
important step in the direction of making HAR more privacy-sensitive, but it might not be enough for many
users and applications. Thus work remains to further protect user privacy and adapt to different uses and users. A
particularly promising idea we plan to explore in the future is to create sparse filter banks that permit classification
identifying only a few characteristic and privacy-preserving frequency ranges per activity.
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A SUPPLEMENTAL RESULTS

A.1 IMU-based Event Detection
Beyond the Random Forest classifier described in the main body of the paper, we also evaluated the performance
of other popular statistical machine learning classifiers on our featurized IMU data. This included a Support
Vector Classifier (RBF kernel) and a Logistic Regressor. The Support Vector Classifier and the Logistic Regressor
had an average balanced F1 score of 0.85 and 0.82 respectively. This was comparable to the F1 score of our
Random Foreset Classifier (0.88). The onset and offset detection times of the Support Vector Classifier were
0.59 and 0.19 seconds respectively, and that of Logistic Regressor were 0.61 and 0.30 seconds respectively. Our
Random Forest Classifier has a comparable onset time of 0.62 seconds but a better offset time of 0.16 seconds.

A.2 Multimodal Event Detection
In the future, as edge neural net compute modules get further optimized in terms of performance and power, our
multimodal activity recognition model could be executed continuously for event detection. For each classification,
if a predicted activity is above a confidence threshold, we consider it an event. Else, if it’s below a confidence
threshold, or belongs to the Other class, we do not consider it an event. SoMoHAR’s multimodal model is able
to detect activity events with an Area Under the ROC (AUC) of 0.825 (𝑆𝐷 = 0.04), within an average onset and
offset time of 0.3 and 0.5 seconds respectively. Crucially, this is comparable to our sound-only model at 16 kHz
which has an AUC of 0.820 (𝑆𝐷 = 0.03), and an average onset and offset time of 0.2 and 0.3 seconds, respectively.
For a detailed comparison between different modalities and audio sampling rates, please refer to Figure 10.

Fig. 10. (Left) ROC curves for detecting activity events using various models. (Right) Corresponding activity event detection
metrics for models at different sampling rates.
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A.3 Instance-Level Metrics for Activity Recognition
We also computed instance-level metrics for our activity recognition models across all activities (including the
Other class). Figure 11 displays context-independent, instance-level performance in terms of balanced accuracy,
F1 score, precision and recall. A similar trend to the segment-level metrics is observed, with both the audio-only
and motion+audio models’ performance decreasing in lockstep as the sampling rate is reduced. Furthermore, the
multimodal model consistently outperforms those reliant on one modality alone.

Fig. 11. Instance-level metrics for activity recognition vs. audio sampling rate.
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