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Providing university teachers with high-quality opportunities for professional development cannot happen without data 
about the classroom environment. Currently, the most effective mechanism is for an expert to observe one or more 
lectures and provide personalized formative feedback to the instructor. Of course, this is expensive and unscalable, and 
perhaps most critically, precludes a continuous learning feedback loop for the instructor. In this paper, we present the 
culmination of two years of research and development on EduSense, a comprehensive sensing system that produces a 
plethora of theoretically-motivated visual and audio features correlated with effective instruction, which could feed 
professional development tools in much the same way as a Fitbit sensor reports step count to an end user app. Although 
previous systems have demonstrated some of our features in isolation, EduSense is the first to unify them into a cohesive, 
real-time, in-the-wild evaluated, and practically-deployable system. Our two studies quantify where contemporary 
machine learning techniques are robust, and where they fall short, illuminating where future work remains to bring the 
vision of automated classroom analytics to reality. 
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1 INTRODUCTION 

Quality university education has significant personal and macroeconomic implications. For this reason, there is 
an extensive literature on ways to improve university instruction [29][35][56][69][72]. For instance, increasing 
student engagement and participation in class has been shown repeatedly to significantly improve learning 
outcomes [24][69]. However, most university classes still rely on less-effective approaches where students 
passively receive information, even in small classes where greater interaction could occur [59]. This situation is 
difficult to change. Professors are typically hired and promoted for their domain expertise, and they typically 
view themselves as domain experts and not teaching experts [3]. Unlike K-12 teachers, who almost always 
receive professional education on how to teach in addition to gaining expertise in a content domain, university 
faculty typically receive no training on how to teach and have no official time allocated for doing so. Instead, 
they are expected to learn how to teach when they work as a teaching assistant while pursuing an advanced 
degree [33][34], often continuing models practiced by their own professors [10].  
 For instructors who want to improve their practice, there remain significant challenges that have led to this 
systemic problem with the current state of learning. The most critical of these is the lack of sufficient feedback 
opportunities on pedagogical skill, due to unscalable resources. Regular feedback on ones’ current practice is an 
essential component of improving any skill [9]. Teachers need to see how their practices (mis)align with 
effective pedagogy in order to change [35]. However, unlike learning algebra, acquiring regular, accurate data 
on teaching practice is currently not scalable. When it is requested, acquiring this data currently relies on 
professional human observers to provide individualized formative feedback [22][28][29][39][67]. Unfortunately, 
the high cost in situ experts precludes any continuous instructional feedback loop, as typically just one or two 
lectures are observed for an instructor in a year. 
 To investigate how automated approaches could support professional development for university teachers 
at scale, we developed a holistic, classroom sensing system called EduSense. This system captures a wide variety 
of classroom facets shown to be actionable in the learning science literature, at a scale and temporal fidelity 
many orders of magnitude beyond what a traditional human observer in a classroom can achieve. Automated 
class analytics can provide a continuous feed of data on which instructional support systems can be built – in 
much the same way a Fitbit sensor tracks step count that feeds into end user applications that e.g., encourage 
healthy behavior. More specifically, EduSense captures both audio and video streams using low-cost commodity 
hardware that views both the instructor and students. We build upon state-of-the-art computer vision and audio 
classifiers, adapting them to the classroom domain, on top of which we developed custom classifiers that detect 
theoretically-motivated features associated with effective instruction from prior work (Table 1). These include 
detection of hand raises, body pose, body accelerometry, and speech acts. 
 While some of these features have been demonstrated individually in prior work, EduSense is the first to 
unify them into an extensible and cohesive system that has been deployed in the wild. We also describe how 
our system scales across many simultaneous class sessions, helps preserve student privacy, and maintains a 
coherent datastore across different temporal resolutions. Taken together, we believe EduSense constitutes a 
significant advance beyond prior efforts to make pedagogically-relevant classroom data available to instructors 
about their own practice on a regular basis, while also providing an extensible platform for others to deploy and 
build upon (to be open-sourced at publication). We systematically evaluate the efficacy of each EduSense 
feature, in both a controlled classroom study as well as in real-world classrooms. Our results show where state-
of-the-art machine learning succeeds and fails, underscoring important avenues of future work.  

2 RELATED SYSTEMS 
Feedback on teaching is most effective when it contains accurate data and evidence, and when it is focused on 
specific topics, such as classroom discussion or question wait time [9]. There is an extensive learning science 
literature on methods to improve instruction through training and feedback that informed our system’s features 
(broken down in Table 1). Much prior work has investigated how such data can be shared with teachers through 
feedback systems (e.g., “dashboards”), and studies have shown that teachers make use of the data and that it 
results in positive effects in changing teacher behavior (see e.g., [32][37][38][77][78]). Several successful 
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feedback systems were powered through “Wizard of Oz” means (see e.g., Classroom Discourse Analyzer [15] 
and Gerritsen et al. [26][27]), which could be powered by systems such as EduSense in the future. Most directly 
relevant to EduSense are automated sensing systems, which we now review in greater detail.  

2.1 Instrumented Classrooms 
In order to achieve robust detection of events in a practical manner, most prior sensing systems that attempt to 
collect data about the classroom have elected to directly instrument the physical fabric of the classroom, 
typically the furniture, such as student desks and chairs. For example, several projects have used chairs 
instrumented with pressure sensors [2][58]. The latter systems demonstrated recognition of various student 
poses that characterize varying levels of interest and engagement, such as slumped back vs. sitting upright.  
 There have also been innumerable efforts to make student desks interactive, usually by adding computing 
to the tabletop (e.g., buttons, touchscreens, etc.), or with response systems like “clickers” [1][12][20][21][68]. 
Such approaches are inflexible and can be expensive to deploy and maintain. To reduce cost and avoid direct 
instrumentation, some systems replace physical, electronic clickers with low-cost printed responses using color 
markers [25], QR Codes [17] or ARTags [57], combined with a computer vision system for detection. 
 Another approach is to locate the sensing apparatus on students or instructors themselves (i.e., “wearables”), 
which can offer robust detection of fine-grained signals. Notable among these systems is Affectiva’s wrist-worn 
Q sensor [62], which senses the wearer’s skin conductance, temperature and motion (via accelerometers); such 
data has been used to infer engagement level [2]. EngageMeter [32] used electroencephalography headsets to 
detect shifts in student engagement, alertness, and workload. As a practical tradeoff, there have also been efforts 
that instrument just the teacher, with e.g., microphones [19]. Of course, instrumenting users with non-personal, 
accessory hardware carries a social, aesthetic and practical cost. 

2.2 Non-Invasive Class Sensing 
Non-invasive user sensing avoids the social and practical costs of instrumenting teachers and/or students with 
hardware. For this reason, our goal from the outset was to be minimally invasive with respect to hardware, so 
as to be maximally practical. While there are many classes of non-invasive sensors, two in particular have been 
brought to bear for classroom sensing: acoustic and visual. 
 Speech is a rich signal source that can inform superior instruction (e.g., turn-taking [14][40], question asking 
[74], and pauses [49]). For instance, [19] used an omnidirectional room microphone and head-mounted teacher 
microphone to automatically segment teacher and student speech events, as well as intervals of silence (such as 
after teacher questions). Oral presentation practice systems such as AwareMe [11], Presentation Sensei [46] and 
RoboCOP [75] compute speech quality metrics, including pitch variety, pauses and fillers, and speaking rate.  
 Equally versatile are systems that employ cameras and computer vision in the classroom. Early systems, 
such as [23], targeted coarse tracking of people in the classroom, in this case using background subtraction and 
color histograms. Movement of students has also been tracked with optical flow algorithms, as was 
demonstrated in [54][63], though neither of these systems attempted automatic segmentation of individuals, 
and instead tracked audience-scale movement or used human-labeled bounding boxes. Computer vision has also 
been applied to automatic detection of hand raises, including classic methods such as skin tone and edge 
detection [41], as well as newer deep learning techniques [51].  
 Robust face detection has been of great interest for classroom sensing; not only can it be used to find and 
count students, but also estimate their head orientation, coarsely signaling their area of focus [63][73][80]. Facial 
landmarks can offer a wealth of information about students’ affective state, such as engagement [76] and 
frustration [6][31][43], as well as detection of off-task behavior [7] (see e.g., [18] for a review of affect-sensitive 
instructional strategies). The Computer Expression Recognition Toolbox (CERT) [52] is most widely used in 
these educational technology applications, though it is limited to videos of single students (i.e., not classroom 
scale). Finally, cameras have also been used to detect activity and objects on student work surfaces [5][79].  



71:4 • Ahuja and Kim, et al. 

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 3, Article 71. Publication date: September 2019. 

2.3 System Contribution 
The above advances in classroom sensing have been published individually, often developed and tested in 
isolation, with few systems drawing together more than a handful of featurization facets. This limits their 
practical real-world utility in classrooms, precludes holistic evaluation, and obscures their true potential. 
Moreover, all of the aforementioned systems are single-classroom scale (e.g., requiring a server per classroom), 
and do not present a scalable system architecture that could approach campus-scale deployments – a key goal 
of our system. Simultaneously, there have been recent, tremendous strides in computer vision and deep learning, 
but these literatures rarely touch on educational uses, and thus offer little insight into how such technologies 
work in complex classroom settings. Thus, we believe EduSense is unique in putting together disparate advances 
from several fields into a comprehensive and scalable system, paired with a holistic evaluation combining both 
controlled studies and months-long, real-world deployments. 

3 EDUSENSE SYSTEM 
EduSense is a full-stack system comprised of four key layers, illustrated in Figure 1. The physical sensors that 
power our system are the lowest classrooms layer. This is followed by a processing layer, in which the audio-
visual scene is parsed to generate initial data, after which a series of specialized featurization modules convert 
and classify into educationally-relevant features. This digested data is then saved for long term storage and 
information retrieval in the datastore layer. The final Apps layer is comprised of end-user applications, which is 
our focus for the next year of research and development. We now review these key layers in greater detail, 
focusing on distinguishing features. 

3.1 Sensing 
Our decision to use vision and acoustic sensing was driven by a desire for low-cost, wide-angle, long-range 
sensing that was minimally intrusive to the physical fabric of a classroom. We tested scores of cameras 

 
Fig. 1. High-level architecture of EduSense, illustrating the key components of our full-stack system. 
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(including depth cameras – early system shown in Figure 2, left) before selecting Lorex LNE8950AB cameras, 
which offer a 112° field of view and feature an integrated microphone, costing around $150 in single unit retail 
prices. These are connected to our campus network using ethernet, which also provides power (i.e., POE). We 
configured these networked cameras to capture 3840x2160 video (i.e., “4K”) at 15 FPS with 16 kHz mono audio. 
They are sufficiently compact and lightweight to enable mounting directly onto electrical boxes, providing a 
clean and inexpensive install (Figure 2, center and right). In each classroom (Figure 1, purple boxes), we deploy 
one camera at the front (looking towards students) and another at the rear (looking towards the front of the 
class where the instructor typically stands).  

3.2  Compute  
Early versions of EduSense used small Intel NUCs to provide compute power in classrooms (Figure 2, left). 
However, this hardware approach was expensive to scale, deploy and maintain. Even with only five augmented 
classrooms early in our development, there was a significant time investment just to keep the machine 
operational and reliably connected to the network. On the software front, this first iteration was built as a 
monolithic C++ application, in which we encountered practical software engineering problems such as 
dependency conflicts and development overhead to integrate new modules. Remote software deployment was 
also frustrating, given these complex dependencies. It also made it more time consuming and fragile to 
incorporate modules relying on other languages such as Python, which is popular in the computer vision 
community. Additionally, errors and inefficiencies in any of the modules caused the entire system to break due 
to the lack of isolation.  
 Although successful as a proof-of-concept, these frustrations ultimately led to an architectural redesign, 
which offered isolation and modularity. We moved to networked cameras (akin to a “thin-client” model), as 
described in the previous section. We found these cameras to be highly reliable, with all having run for nearly 
a year without any maintenance. These IP cameras are accessed from a centralized, dedicated on-campus server, 
which pulls audio and video streams on demand using the Real-Time Streaming Protocol (RTSP). Our custom 
GPU-equipped EduSense server has 28 physical cores (56 cores with SMT), 196GB of RAM and nine NVIDIA 
1080Ti GPUs.  
 We designed the different layers, and the interfaces between them (Figure 1), with modularity and isolation 
in mind. We leverage container-based virtualization extensively to isolate our different processes, and indeed 
entire classroom processing instances (which launch as a set of containers; Figure 1, large grey box). We use 
Docker, with each module packaged as a Docker image that includes the module code and its specific 
dependencies. With this design, developers of individual components can develop using whatever language or 
third-party libraries they desire, without worrying about dependencies of other modules or what is available on 

     
Fig. 2. Left: Early version of EduSense, using a Microsoft Kinect One depth camera and Intel NUC. Center: Current 

system, which uses networked 4K cameras that are accessed from a central serve. Right: example classroom from our 
deployment with instructor-facing camera circled in blue.  
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the host machine. These containerized processes communicate with each other via efficient interprocess 
communication (IPC) sockets.  
 Each active classroom has an associated classroom processing instance (Figure 1, large grey box). This 
executes at best effort, load balanced across whatever physical CPU and GPU resources are available on the 
machine. The available resources are elastic depending on how many simultaneous classes are being processed. 
Since several of our featurization and scene parsing modules use the NVIDIA machine learning framework, we 
used the NVIDIA Visual Profiler [60] extensively to improve their performance.  

3.3 Scene Parsing  
With visual and audio data streaming in, the next step is to parse the scene into data primitives that facilitate 
subsequent feature extraction (Figures 1 and 3). The first stage of our visual scene parsing pipeline is a multi-
person body keypoint (i.e., joint) labeler build on top of OpenPose 1.4 [13]. These are launched in their own 
containers (Figure 1, orange), allowing them to be independently restarted in the case of failure, and also easily 
swapped as new versions of OpenPose (or other software) become available.  
 We extensively tested and tuned OpenPose parameters to achieve the best performance in our classroom 
context (e.g., heavy occlusion, distant people) and with our high, wall-mounted (i.e., non-frontal) and slightly 
fish-eyed view of the class (examples offered in Figure 4, top row). We also added additional logic to reduce 
false positive bodies (e.g., bodies too large or small), as well as interframe persistent person IDs with hysteresis 

 
Fig. 3. Processing pipeline. Video and audio from classroom cameras first flows into a scene parsing layer,  

before being featurized by a series of specialized modules. See also Figure 1 and Table 1. 

 

 
Fig. 4. Top row: Example classroom scenes processed by EduSense (image data is not archived; shown here for reference 
and with permission). Bottom row: Featurized data, including body and face keypoints, with icons for hand raise, upper 

body pose, smile, mouth open, and sit/stand classification. 
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(to mitigate e.g., momentary occlusion or loss of tracking) using a combination of Euclidean distance and body 
inter-keypoint distance matching. Please see our opensource repository for the above implementation details. 
The result is an array of body data structures, populated with IDs and keypoint metadata, for each frame of 
video. Head keypoints are used to search for faces more intensively, using OpenPose’s face landmarking engine 
(OpenFace [4] as well as dlib 68-point face landmarks [44] were integrated as alternative landmarking engines, 
selectable as a command line argument or in the debug interface). Any landmarks found are added to a body’s 
metadata. To facilitate movement of data, both to later featurization modules and also to persistent storage, we 
serialize our body array as a JSON object. 
 Running in parallel (in separate container) is our acoustic scene parsing pipeline (Figure 1, blue), which uses 
a deep learning model paired-down from a 30-class, acoustic model developed by Laput et al. [48]. Instead of 
predicting all 30 classes, we use the network to predict only silence and speech. The process described in [48] 
also makes it relatively straightforward to train new sound classes of interest in the future. An adaptive 
background noise filter is applied to classroom audio to remove persistent background noises (e.g., HVAC, 
projector fans). In addition to outputting a predicted class, a confidence score is also generated.  

3.4 Featurization Modules  
Our scene parsing stage provides the raw material for a series of subscriber featurization modules, responsible 
for a particular classroom facet of interest (Figure 1, cyan and dark blue; Figure 3). These are launched as 
containers and receive data over an IPC socket using a standard API which affords modularity. This architecture 
also allowed us to swap in new implementations as they become available, as well as toggle individual 
featurization modules on and off (as can be done with checkboxes in our debug GUI interface). Figure 4, bottom 
row, illustrates the output of various featurization modules. Table 1 provides a listing of all features of interest 
we implemented, along with citations that theoretically motivate or experimentally demonstrate the value of 
such sensed dimensions. For specific implementation details, please refer to our open source code repository 
(http://www.EduSense.io). We note that our feature set, while diverse, is not exhaustive. There are many other 
valuable dimensions of data that could be gleaned through video and audio processing; our present 
implementation is one set of features that we believed were a natural starting point and potent proof-of-concept.  
 
Sit vs. Stand Detection: This featurization module uses body keypoints to predict if a person is sitting or standing. 
It requires seven keypoints to make an accurate prediction: neck (1), hips (2), knees (2), and feet (2). The relative 
geometry of these points is encoded by computing direction unit vectors between all pairs of these keypoints. 
To this feature vector, we also add the ratio of distances between the chest and foot, and chest and knee for both 
legs. This combined feature vector is passed to an MLP classifier (sklearn, default parameters) we trained with 
pilot data. In cases where the lower body is occluded, and the above keypoints are not available, we bypass our 
classifier and predict that the user is seated.  
 
Hand Raise Detection: In addition to occlusion, hand raise detection is even more challenging due to the variation 
in the way students participate. We experimented with a number of techniques, including training a deep neural 
net on a cropped region above and to the sides of detected faces, but we found that other student’s hands 
entering the frame led to many errors. Similar to sit/stand, we found the best result by relying on body 
keypoints, which avoids a lot of visual noise. Specifically, this module ingests eight body keypoints per body: 
neck (1), chest (1), shoulder (2), elbow (2), and wrist (2). We compute direction unit vectors between all pairs of 
these points. We also compute the distance between all pairs of points, normalized by the distance between the 
nose and neck points. Note these features are essentially scale invariant to both body distance from camera and 
physical body size. These values are used as input to an MLP classifier (sklearn, default parameters), which 
predicts either hand raised or not. Importantly, during training (and later, in our evaluations), we exposed our 
classifier to a wide range of partially and fully raised hands (see Figure 5, right four images).  
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Upper Body Pose: As shown in [2], which used physical chair sensors, body pose can be indicative of student 
affective and attentional state. To explore the feasibility of sensing similar attributes, but in a non-invasive 
computer-vision driven manner, we trained an upper body pose classifier. Due to heavy visual occlusion, we 
did not attempt lower body pose. For this module, we utilize the same eight upper body keypoints we found to 
be successful in our hand raise detection module. As before, we compute direction unit vectors between all pairs 
of points, and distance between all pairs of points, normalized by the distance between the nose and neck points. 
These values are used as input to a multiclass MLP model (sklearn, default hyper parameters), which was trained 
during development to predict three proof-of-concept classes: arms at rest, arms closed (e.g., crossed), and hands 
on face (Figure 5, left three images).  
 

Table 1. Features of interest we selected for implementation, along with motivating literature. 

Feature of Interest Motivation and Sources 

Sit vs. Stand  In addition to demarking the start and end of class, this feature could provide the basis for noting changes in class 
activity (e.g., breaking into groups). Further, studies of classroom proxemics [36] revealed that teachers who sat 
behind/beside/on desks were rated by students as low in both affection and inclusion. In contrast, teachers who 
stood in front of desks or walked among students were more likely to be perceived as warm, friendly, and 
effective. 

Hand Raised Frequency and quantity of hands raises is a good indicator of student participation [69] and effective lecture 
design [14][59], both of which correlate with positive instructional outcomes.  

Upper Body Pose Instructors who have an open body position communicate to their students that they are receptive and immediate, 
whereas teachers who fold in or keep a closed body position are perceived as nonimmediate and unreceptive [65]. 
Student body pose can be indicative of student affective and attentional state, as demonstrated in [2][58], which 
instrumented classroom chairs with sensors. 

Smile  Facial landmarks can offer a wealth of information about students’ affective state, such as engagement [76] and 
frustration [6][31][43], as well as detection of off-task behaviors [7]. To evaluate the feasibility of facial affect 
analysis at classroom scales, we selected smile as a proof of concept. Instructors who smile and have positive-
valence facial affect are perceived as more “immediate” and “likeable” than those who do not, engendering 
affiliation [65]. Adapting instruction to affect has been shown to improve educational outcomes [18].  

Head Orientation; 
Attention; 
Class Gaze  

At a high level, attention is a pre-requisite for learning [30]. Head orientation has been shown to be a proxy for 
gaze attention [63][64][73][80], e.g., toward the instructor, educational materials (e.g., on the table), and other 
classroom foci (e.g., whiteboard, projection screen). In addition, low mutual gaze with students suggests that a 
teacher is not interested and not approachable [65]. Conversely, teachers who look at their students (i.e., rather 
than at the board or down) are perceived as more animated, more interested and have more rapport [65].  

Body Position; 
Classroom Topology 

Student location has been shown to impact participation [61], and such data can be used to detect if actions are 
occurring more frequently in one area of the classroom (e.g., hand raises). Studies have also shown that 
instructors who move equally between the right and left sides of a classroom are more effective [36]. This spatial 
data is also useful in visualizing the distribution of other features as a “birds eye view” of the classroom.  

Accelerometry Studies have found different kinesthetic patterns between effective and "average" teachers, with effective teachers 
moving more [55][70]. Additionally, student attitudes were positively correlated with increased movement by 
instructors. For students, prior work (using worn accelerometers) demonstrated that movement could be used to 
estimate affect [2][62].  

Student vs. Instructor 
Speech 

Effective instruction incorporates student discussion and questions [14][40][69], and thus it is useful to know the 
patterns and ratio of student vs. instructor speech. With such data, it may be possible to prompt the instructor to 
elicit more student participation, which has been shown to produce deeper learning than simply requiring them to 
listen and take notes [16][59]. 

Speech Act 
Delimiting 

Frequency and duration of speech have been shown to be an indicator of participation [19], which strongly 
corelate to educational outcomes [69]. Studies have investigated effective intervals of silence during instruction 
[14][49], for example after a question is asked [74] and to facilitate effective turn taking [40]. 
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Smile Detection: As a proof-of-concept of class-scale facial affect analysis, we built a module that detects smiles 
(which has been shown to correlate to useful facets in previous work such as [18]). For this, we use ten mouth 
landmarks on the outer lip and ten landmarks on the inner lip. We compute direction unit vectors from the left 
lip corner to all other points and use a SVM (sklearn, poly kernel with degree 3, default parameters) for binary 
classification.  
 
Mouth Open Detection: With our two audio channels, it is not possible to localize a speaker in the classroom. As 
a potential, future way to identify speakers, we developed a module that estimates if a mouth is open, the 
confidence of which could be tracked over many frames (per person) to produce a talking confidence. We use a 
binary SVM (sklearn, linear kernel, default parameters) and two highly descriptive features adapted from [71] 
(which predicted eyes open vs. closed): the height of the mouth to the left and right of center, divided by the 
width of the mouth.  
 
Head Orientation & Class Gaze: Head orientation can be used as a coarse proxy for gaze attention; e.g., toward 
the instructor and other classroom foci. Using a perspective-n-point algorithm [50] in combination with 
anthropometric face data [53], EduSense produces a coarse 3D orientation of the head for each body. This 
process requires an accurate measurement of camera intrinsics before use, which we performed using OpenCV’s 
calib3d module [8]. While our estimation code can run with as little as two facial landmarks, in practice, ≥75% 
are needed for any degree of accuracy. Once found, head orientations for individuals can be aggregated into a 
classroom histogram of foci, or even a combined mean gaze vector.    
 
Body Position & Classroom Topology: Our facial landmark, perspective-n-point computation not only produces 
a 3D orientation for each head, but also an estimated 3D position in real world coordinates. We save this 
metadata for each body found in a scene, allowing us to visualize data not only from the camera’s perspective, 
but also, e.g., from a synthetic top-down view. This can be used to reveal the classroom topologies (i.e., student 
layout), and in the future, help illuminate spatial patterns in the class (e.g., fewer hand raises in the back of class 
or where the instructor spends the most time).  
 
Synthetic Accelerometer: Worn accelerometers have been used previously to infer student engagement and affect 
[62]. To achieve a similar result, but without the need for worn sensors, we simply track the motion of bodies 
across frames. Similar to the previous module, we use the 3D head position produced during scene parsing, and 
calculate a delta X/Y/Z normalized by the elapsed time since the previous frame. This affords us a 3D motion 
and acceleration vector in real world units (e.g., m/s). As one might expect, in-camera-plane motion (i.e., X/Y/) 
is more robust then Z-axis estimations. 
  
Student vs. Instructor Speech: This module builds on top of the sound and speech detector running as part of the 
scene parsing pipeline. When speech is detected, this module computes three features: 1) the RMS of the student-

 
Fig. 5. Example participant from our controlled study. EduSense recognizes three upper body poses (left three image) 

and various hand raises (right four images). Live classification from our upper body pose (orange text) and hand 
classifiers (yellow text) are shown. 
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facing camera’s microphone (closest to the instructor), 2) the RMS of the instructor-facing camera’s microphone 
(closest to the students), and the ratio between the latter two values. A random forest classifier (sklearn, default 
parameters) is then used predict whether the current speech is coming from the instructor or student(s). 
 
Speech Act Delimiting: This module ingests per-frame speech detection results, and computes speech act 
delimiters (e.g., 1:05:34 to 1:05:42 is one continuous speech act). We apply basic hysteresis to mitigate single 
frame classification errors.  

3.5 Training Data Capture 
Most of the featurization modules described in the previous section required extensive labeled data in order to 
train classifiers. There was the immediate and obvious challenge of needing to recruit a multitude of participants 
to help capture the wide variety of manners in which e.g., humans raise their hands. However, a secondary 
challenge was capturing data at a wide variety of viewpoints, as our cameras were being deployed in classrooms 
at many heights and horizontal positions (though we recommended central locations whenever possible). This 
is contrast to many other computer vision systems, that assume head-on orientations.   
 To overcome this challenge, we built a custom, multi-viewpoint capture rig, consisting of three heavy duty 
stage tripods and 12 Lorex LNE8950AB cameras (Figure 6). The outer two tripods carried three cameras each, 
while the center tripod carried six cameras. Cameras were placed between 150 and 350 cm above the ground, 
alternating sides of the tripod, in a distributed fashion in order to provide a variety of viewpoints. All cameras 
were connected to gigabit ethernet switch, to which a laptop was also connected. Custom software opened all 
12 camera streams simultaneously at 4K resolution at 3 FPS, and saved video to disk for later processing and 
machine learning use.  
 

 

3.6 Datastore 
There are several types of data generated by EduSense. The first is non-image classroom data, which is the 
output of our various scene parsing and featurization modules. Importantly, this featurized data does not contain 
identifying information. A typical class session, lasting around 80 minutes with 25 students, generates roughly 
250MB of data in uncompressed ASCII JSON format when processing in realtime (around 0.3-2.0 FPS; see also 
Figure 15). Infilled data (15 FPS, see Section 3.8) is roughly sixty times larger (i.e., ~16GB per typical class session, 
at 15 FPS for both front and back cameras). It is also important to note that EduSense may be processing upwards 
of a dozen classes (live or infill) simultaneously. Managing this volume of data required us to build a custom 
backend to efficiently store, organize and retrieve EduSense data. For this, we wrote a custom backend server 
in the Go language (Figure 1, yellow), which communicates with a dedicated MongoDB instance (Figure 1, red). 

    
Fig. 6. Left: Training data capture rig in an example classroom. Right: Closeup of center mast, with six cameras. 
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Both class processing instances and user-facing applications use a well-defined, narrow REST API on our GO 
backend, using Transport Layer Security (TLS) for encrypted communication.  
 The other data generated is raw classroom video/audio, which is saved long enough for temporal infilling to 
occur (or in the case of our studies, for human coders to label). We do not save these frames long-term to 
mitigate obvious privacy concerns. It is also possible to discard video/image frames as soon as they are processed 
live, with no data infilling occurring at a later time, if lower temporal resolution is acceptable. For these 
recordings, we use a secure Network Attached Storage (NAS; Figure 1, pink) box on our local network. We use 
flat files, organized in a directory structure by course number, classroom, time of class and date of capture.  

3.7 Automated Scheduling & Classroom Processing Instances  
We built a scheduler (Figure 1, dark green) using the open source version of SOS JobScheduler [42], which 
includes many useful features, such as a web interface that facilitates monitoring and tracking job status. 
EduSense maintains a list of enrolled classes, which includes the time, day(s) and room where each meet, as well 
as metadata such as instructor name, department, course number and name. The room UID 
(BuildingAbbreviation_Number, e.g., CRG_172) is used to lookup the network addresses of its two IP cameras. 
Using this data, EduSense automatically launches real-time processing instances at the start of each class, which 
consists of a set of containers for our various scene parsing and featurization modules (Figure 1, large grey box; 
see also Sections 3.3 & 3.4). Additionally, two FFMPEG instances (Figure 1, light blue) are launched to record 
the front and back camera streams, which are used for subsequent infilling, described next. 

3.8 High Temporal Resolution Infilling 
As noted previously, EduSense’s current real-time performance is around 0.5 FPS (while processing up to 9 
simultaneous classes). As resources become available, an infilling scheduler (Figure 1, dark green) 
opportunistically launches EduSense processing instances (i.e., same container set as Section 3.7) to re-process 
classes using recorded footage. This infills a class’ data at maximum temporal resolution in the database – 15 
FPS in our current implementation – which takes longer than real-time to process. Note that our EduSense 
architecture is designed to scale horizontally; by adding more EduSense servers and load balancing which classes 
are handled by each server, campus-scale sensing should be achievable.  
 This infilling mechanism is a natural complement to real-time processing. The latter gives us real-time class 
data at reduced temporal resolution to power immediate in-class and after-class feedback. On the other hand, 
infilling provides superior temporal resolution for non-real-time uses, such as end-of-day reports or even 
semester-long analytics. Whenever a report or statistic is generated, it uses all available data, even if the full 
framerate infilling is only partially completed.  

3.9 Privacy Preservation 
There are natural privacy concerns when capturing audio and video data. Deploying on our campus required 
buy-in from administration, registrar, facilities management, computing services, instructors and students. 
These conversations were important in underscoring the sensitivity of the data, as well as identifying 
stakeholders. As such, privacy preservation was a first-class design constraint in our system. 
 Foremost, in actual (i.e., not study) deployments, EduSense does not archive classroom video. Instead, 
incoming audio and images are immediately parsed and featurized into a format that is privacy preserving (e.g., 
body keypoints, but no image). If post-class infilling is enabled (entirely optional), the video will persist in a 
temporary cache until it is processed, after which it is automatically deleted. If post-class infilling is disabled, 
no image or audio is ever saved to the system, temporary or otherwise. Only featurized data is saved long-term 
in our database, accessible through our REST-based Web API, which includes user authentication and access 
control (i.e., only the authenticated instructor for a class is able to access their class’s data). Figure 4 offers 
several example classroom scenes – the bottom row illustrates the type of anonymized data saved by EduSense 
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(note the images are not saved; included here only for reference and with permission). In the future, EduSense 
can be extended to reduce privacy concerns even further. For example, from our current set of features, we 
could expose only higher-level “class aggregates” (e.g., mean class gaze location, total number of hands raised), 
rather than featurized data for each individual.  
 In order to track metrics of individuals across frames, EduSense does assign a “person ID”. This is not based 
on any visual or audio data, but rather body keypoints, which are tracked over time via a distance-based and 
keypoint similarity matching algorithm. This ID tracks with a body as long as it stays in view, and thus there 
are no IDs that persist across more than one class session. Note that an instructor (or someone else in the 
classroom) may still be able to de-anonymize the ID and associate it with a real identity based on the coordinates 
stored by EduSense and where they remember someone sitting. However, this risk is no worse than someone 
being in class and being able to observe the behavior of various students and instructor directly.  
 Finally, we note that for purposes of development, we temporarily stored classroom video data in order to 
manually annotate ground truth in a subset of frames. We used this data in many ways, including unit tests, 
training machine learning models, and studying the efficacy of our featurization modules. In accordance with 
our IRB, video data was deleted once testing or analysis was complete.  

3.10  Debug and Development Interface 
EduSense is primarily designed to be launched as a headless process by an automated scheduler (described in 
the next section). However, EduSense can also be launched with a minimal user interface, designed for 
debugging and demonstration (Figure 7). This was built in Qt5 and runs in an independent thread, so as not to 
block any live processing. Users can connect to any RTSP stream or browse their local filesystem to select a 
video or folder of images. There are widgets to configure most options in the system, for example, toggling 
featurization modules on or off. A live featurized view is provided in the center of the application, which can be 
panned and zoomed as needed to limit the total information shown and more closely integrate a scene or feature. 
Finally, a detail inspector can be summoned by clicking on the skeleton of any person in the scene.  
 

 

3.11  Open Source and Community Involvement  
EduSense is open sourced with several goals in mind. Foremost, we hope that others will deploy the system and 
gain value not only in the data generated, but also as an opportunity to engage with topics surrounding smart 
classroom sensing (e.g., responsive pedagogy, professional development, privacy, automation, sensing fidelity). 

 
Fig. 7. Although EduSense is mostly launched as a headless process, we built a utilitarian  

graphical user interface for debugging and demonstration. 
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Second, EduSense can serve as a comprehensive springboard for testing and continually refining the underlying 
computer vision algorithms in the classroom (and similar settings). Finally, we designed EduSense with 
modularity in mind, hoping to cultivate a community that can help improve and contribute new features and 
modules. EduSense can be downloaded from: http://www.EduSense.io.  

4 CONTROLLED STUDY 
Systems research, such as this work, is challenging to assess holistically due to the highly faceted nature of the 
research and the lack of immediate baselines. In response, our evaluation strategy was to assess the technical 
efficacy of our individual featurization modules described above. Of course, testing these in a live classroom 
setting is challenging, as the range of behaviors and frequency of some events can be low. Likewise, establishing 
a ground truth can be subjective and requires human observers to label data. Thus, as a first evaluation, we used 
a controlled experimental procedure that allowed us to systematically quantify the performance of each 
featurization module. In our second study, we move to real classrooms with uncontrolled instructors and 
students, offering greater ecologically valid (albeit with other limitations). However, taken together, these two 
studies provide a holistic view of EduSense’s performance.  

4.1  Overall Procedure 
We deployed EduSense in five exemplary classrooms with a variety of sizes, configuration, and lighting at our 
institution. For each classroom, we recruited one participant to play the role of the instructor, and between 3 
and 6 participants to play the role of students. In total, we had 5 instructors and 25 student participants. Each 
instructor stood at the front of their class, while the students were randomly seated in the classroom. 
Participants were given a brief orientation to familiarize them with the actions they would perform and the 
language the experimenter would be using to proceed through the experiment.  
 Now situated, an experimenter used a surveyor’s rope to measure the approximate distance of each 
participant from the camera (front-facing camera for instructors; rear-facing for students). Participants were 
then given a printed script, which provided a numbered list of actions to perform, which was randomized per 
participant (an illustration of this ordering can be seen in Figure 8). The experimenter would verbally announce 
the current stage (e.g., “We’re now on B-17”), and once participants had complied with the instruction, the 
EduSense debug interface was used to flag data at that instant in time (e.g., B-17.json) for later analysis. Non-
flagged frames (i.e., no ground truth) were discarded. In total, there were five phases of data collection, listed in 
Table 2 and described in detail subsequently.  
 

 
Fig. 8. Illustration of paper “script” given to  
participants, leading them through a per- 

participant randomized (known) action sequence. 

Table 2. Overview of experimental phases. In total, our 30 
participants (5 instructor and 25 student roles) provided 1545 

body instances and 60 speech/silence audio instances with 
labeled ground truths for analysis. 

 

Study 
Phase 

Experimental 
Focus 

Example 
Action 

Trials per 
“student” 

participant 

Trials per 
“instructor” 
participant 

A Upper body pose Hand on face 21 6 

B Mouth state Smile with 
teeth showing 12 12 

C Sit vs. stand Stand 6 – 

D Head orientation 15° pitch and  
-30° yaw 16 16 

E Silence vs. speech Silence 2 2 
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 Using this corpus of ground-truthed, flagged frames, we were able to benchmark the performance of all 
major features of EduSense. Student and instructor results are combined where there was no significant 
performance difference. After discussing general body keypointing performance, we describe the experimental 
procedure of each phase, followed by results. Figure 9 provides an overview of results. 
 

 
Fig. 9. Overview of experimental results for our controlled study (this section) and our subsequently described real-world 

classrooms study. Note sit vs. stand was not evaluated in the latter study. Please see text for procedural details.  

4.2 Body Keypointing 
Although OpenPose reports a rigorous evaluation of its body keypoint tracking performance [13], it offers 
limited insight into how well the model would perform in a classroom setting, with cameras operating high on 
walls, and where students are seated and often occluded by other people and furniture. Second, we made a 
number of small improvements to OpenPose during development, tweaking parameters and adding extra pose 
logic, which we found to improve stability and accuracy in pilot testing.  
 To best convey performance in the context of a classroom, we break out results by error type. We found that 
4.5% of bodies were missed entirely, representing a low-level failure to recognize a person. However, 95.5% of 
bodies were correctly found. Of these, 10.1% were found to have at least some misalignment (defined as at least 
one body keypoint exceeding 10% of true body joint position). The remaining 89.9% of body-instances were 
judged to be accurately keypointed. Finally, EduSense found eleven bodies where there was no human, for a 
false positive rate of less than 1%. 
 In a classroom setting, visual occlusion is unavoidable. To quantify the effect of occlusion on body keypoint 
visibility, we provide the success rate of finding keypoints in Figure 10. Unsurprisingly, the upper body is most 
readily captured, with the feet and legs posing a (likely impossible) challenge. Fortunately, most classroom 
interactions are upper-body driven.  

4.3 Phase A: Hand Raises & Upper Body Pose 
“Student” participants were requested to perform one of seven possible upper body poses: arms resting (e.g., on 
table, on arm rests, or by side), left hand raised, left hand raised partial, right hand raised, right hand raised 
partial, arms closed, and hands on face. These seven upper body poses were requested three times each, for a 
total 21 instances per student participant. Instructor participants only performed arms resting and arms closed, 
requested three times each in different standing locations at the front of the classroom (left front, center front, 
and right front), for a total of six trials per participant.  
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 In Section 4.2, we quantified keypoint tracking quality. To understand the performance of EduSense’s hand 
raise detection, we only studied frames where participants’ upper bodies were captured (consisting of head, 
chest, shoulder, elbow, and wrist keypoints – without these eight keypoints, our hand raise classifier returns 
null). This prevents compounding several sources of error and offers a more direct evaluation of our hand raise 
classifier. To assess hand raise detection accuracy, we combine full and partial hand raises along with left and 
right hand use, whilst all other upper body poses we captured in Phase A are used for the negative class. On 
this data, hand raises were detected with 94.6% accuracy. There were no false positive instances (i.e., any other 
pose being incorrectly detected as a hand raise). In regard to our three upper body poses (arms resting, arms 
closed, and hands on face), again looking only at instances with correctly identified keypoints, mean accuracy 
was 98.6% for students and 100% for instructors.  

4.4 Phase B: Mouth State 
Similar to the above procedure, all participants were instructed to perform one of four possible mouth poses: 
neutral (mouth closed), mouth open (teeth apart, as if talking), closed smile (no teeth showing), and teeth smile 

 

 
Fig. 11. The mouth states captured in our controlled study: mouth closed, closed smile, teeth smile, and mouth open. 

 

 
Fig. 10. Histogram showing the percent of different body keypoints found in three of our experimental contexts.  
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(with teeth showing). For student participants, the 4 mouth poses were requested three times each, in a random 
order, for a total 12 trials per participant. Instructors also performed the four mouth poses, repeating the process 
three times at different standing positions at the front of the classroom, for a total of 12 trials per participant. 
Figure 11 illustrates the facial landmarks used to determine mouth state. 
 In frames where mouth landmarks were found (discussed in greater depth in Section 4.8), overall smile 
classification accuracy was 78.6% for students and 87.2% for instructors (positive classes: closed smile and teeth 
smile; negative classes: neutral and mouth open). A separate classifier predicts if the mouth is opened or closed, 
which had a mean accuracy of 83.6% for students and 82.1% for instructors (positive class: mouth open; negative 
classes: neutral, closed smile and teeth smile). We suspect the main limitation on performance is lack of camera 
resolution – faces in the rear of a classroom (e.g., 6m away) might only be 40 pixels wide, which is insufficient 
for accurate facial landmarking, which causes later modules like these to fail (mouths were as small as 17×5). 
Fortunately, this issue should be mitigated as higher resolution cameras become available.  

4.5 Phase C: Sit vs. Stand  
Participants were asked to either sit or stand, 3 times each, in a random order (i.e., 6 instances per participant). 
“Instructor” participants skipped this phase and remained standing throughout data collection. On these frames, 
EduSense entirely missed one body-instance (0.7% of our data) and had serious keypoint alignment errors on 
4.6% of bodies, often due to lower body occlusion. On the remaining 94.7% of correctly keypointed instances, 
EduSense was 84.4% accurate at predicting sitting versus standing. We found the chief source of confusion 
stemmed from our angled (i.e., “3/4ths”) view of the classroom, where the difference between a front-on reclined 
and standing pose was often indiscernible when using only 2D skeletal data. In the future, depth data could be 
used to help disambiguate these poses.  

4.6 Phase D: Head Orientation  
In this phase of data collection, the experimenter verbally requested eight head orientations: three possible 
pitches (“down” -15°, “straight” 0°, “up” +15°) × three possible yaws (“left” -20°, “straight” 0°, “right” +20°), 
omitting directly straight ahead (i.e., 0°/0°). To perform this with some level of accuracy, a sheet of paper was 
affixed to student desks with printed lines denoting the three yaws. For pitch, participants were given a 
smartphone running a custom application that displayed a large, real-time pitch measurement (smartphone held 
at the chin roughly perpendicular to the plane of the face; Figure 12). For a single trial (e.g., pitch -15°, yaw 
“right” +20°), participants first oriented their heads to look directly into the camera. They then tapped the 
smartphone screen, which zeroed the pitch value, with all subsequent values being shown relative to this vector. 
Then, using both the paper yaw guide and live smartphone pitch value, they aligned their head to the requested 
orientation. Each yaw-pitch combination was requested twice, for a total of 16 head orientation trials.  
 For analysis, we compared EduSense’s predicted head pitch and yaw against the orientations requested in 
our user study. Unfortunately, in many frames we collected, ~20% of landmarks were occluded by the 
smartphones we gave participants – an experimental design error in hindsight. If we limit our analysis to body 
instances where at least 90% of landmarks were found (i.e., ≥ 63 landmarks out of 70), roughly a quarter of our 
collected data remains. On this subset, mean angular error is 12.6° (SD=8.2) for yaw and 14.5° (SD=11.7) for pitch, 

 
Fig. 12. Example head orientations requested in our study, with detected face landmarks shown. 
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which should be sufficient for coarse estimation of attention. Nonetheless, we ran the same analysis on all head 
orientation study data (Phase D), in which faces had an average of 40.9 (SD=25.6) landmarks available to 
EduSense’s head pose estimator (out of a full set of 70). Using this less than ideal data, EduSense achieved a 
mean angular error of 23.6° (SD=18.8) for yaw and 44.9% (SD=39.4) for pitch. These results suggest that EduSense 
should only attempt head orientation estimations with sufficient facial landmarks. 

4.7 Phase E: Speech Procedure 
Finally, the script instructed one participant at a time to read aloud a paragraph of provided text (both student 
and instructor participants). While each participant spoke, one frame of data was flagged as “speech” by the 
experimenter. In between speakers, one frame of data was flagged as “no speech”. After the study session 
concluded, the flagged frames were used to extract five-second audio clips from recordings. Thus, our 30 
participants yielded 30 speaking and 30 non-speaking instances on which to evaluate our audio features. All no 
speech trials were correctly classified, and all but one speech trial was correct, for a mean accuracy of 98.3%. 

4.8 Face Landmarks Results  
Like body keypoint tracking, facial landmark performance has been well studied in previous work [4][13][44]. 
Here we provide results to quantify performance specifically in our classroom context. We dropped Phase D 
data from this corpus as there was significant occlusion of the face from participants holding a smartphone to 
their face as part of the experiment. In response, we used data from Phases A through C for this analysis. 
EduSense found 93.5% of student faces. Of those that were found, 61.8% had a majority of landmarks correctly 
registered, 37.5% had correct alignment on less than half of the landmarks, and 0.7% had poor alignment. For 
our instructor participants, all faces were found, but one instance was misaligned; 79.0% had a majority of 
landmarks correctly registered, with the remaining faces correctly aligned, but with less than half the landmarks 
found. In general, poor registration of landmarks was due to limited resolution (the farthest faces in our study 
had resolutions around 340×340). Lastly, in the combined instructor and student corpus, eight false positive 
faces were found.  

4.9 Classroom Position & Sensing Accuracy vs. Distance 
EduSense uses the 3D position of students to generate and maintain a real-time classroom topology, which is 
intended to power higher-level analysis (question rate vs. distance from instructor) and visualization modules 
(e.g., top down heatmaps). X/Y position (i.e., movement parallel to the image plane) is relatively straightforward 
to estimate if distance is known (i.e., with trigonometry). However, distance from the camera is more 
challenging to estimate from 2D image data alone. To evaluate the quality of EduSense’s estimation, we 
manually recorded the distance of all participants from the camera using a surveyors’ rope, as noted in our 

 

 
Fig. 14. Percentage of body keypoints and face landmarks 

found plotted against participant distance. 

 

 

Fig. 13. Predicted distance vs. actual  
participant distance. 
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procedure above. Using this ground truth, we found a mean Z-distance error of 50.3 cm (SD=39.8) across all 
participants (see also per participant plot in Figure 13). This spatial accuracy should be sufficient to allow for 
students to be clustered into e.g., rows or tables.  
 All of our aforementioned computer-vision-driven modules are sensitive to image resolution, and thus vary 
in accuracy as a function of distance from the camera. This performance behavior can be seen in Figure 14, 
where the percent of body and face landmarks found (per participant mean) are plotted against participant 
distance. There is an unsurprising negative trend in accuracy as distance increases, which is most pronounced 
for face landmarks, which need high resolution image data. We also see that instructor data is more robust than 
students, chiefly because instructors are less occluded at the front of class.  

4.10  Framerate and Latency 
Figure 15 provides a runtime breakdown of various scene parsing and featurization modules. For this 
experiment, EduSense processed recorded videos, which ran one at a time, so there was no CPU/GPU contention 
(see Section 5.8 for a discussion of real-time performance). We can see that body keypointing runtime is mostly 
constant. However, facial landmarking increases linearly with respect to the number of bodies. For the five 
controlled study classes with less than ten students in the scene, the two scene parsing functions consume 73.1% 
of our total compute time on average. All of our featurization modules combined consume roughly 9.7%. 
Formatting and transmitting the output to the storage backend over the network takes roughly 16.7% of the 
compute time. Later, in Section 5.8, we discuss real-time performance.  

5 REAL-WORLD CLASSROOMS STUDY 
As already discussed, our first study was a controlled experiment, with well-behaved participants that moved 
in lockstep through a series of defined ground truth states, allowing us to accurately benchmark features such 
as the estimation of head orientation (in concert with an accessory smartphone app) and distance from camera 
(verified with a surveyor’s rope). Of course, in a live classroom setting with dozens of individuals, such 
heavyweight methods are impossible. The only practical solution is to post hoc label frames using human coders 
and compare them to EduSense output. Although this approach has limitations, it also offers the best evaluation 
of the real-world feasibility. Figure 9 provides an overview of the results.  

5.1 Deployment and Procedure 
We deployed EduSense in 13 classrooms at our institution and recruited 22 courses for an “in-the-wild” 
evaluation (with a total student enrollment of 687). Over the course of two semesters, EduSense captured and 

 
Fig. 15. Runtime performance of EduSense’s various processing stages at different loads (i.e., number of students). 
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processed 360.8 hours of classroom data. In total, 438,331 student-facing frames and 733,517 instructor-facing 
frames were processed live, with a further 18.3M frames infilled after class to bring the entire corpus up to a 
15 FPS temporal resolution. The difference in live frame count is due to EduSense operating at a slower 
framerate with more people in the scene (i.e., student view).  
 After verifying all students were over 18 years of age, and with assent from both instructor and all students, 
a class was enrolled in the EduSense scheduler for automatic processing. After this point, there was no further 
contact with the class. At the end of the study period, we randomly pulled 100 student-view frames (containing 
1797 student body instances) and 300 instructor-view frames (containing 291 instructor body instances; i.e., nine 
frames did not contain instructors) from our corpus. Though only a small subset, this random cross-section of 
classroom scenes is still sufficiently large and diverse so as to be representative of the full population of frames. 
To provide the ground truth labels, we hired two human coders, who were not involved in the project. It was 
not possible to accurately label head orientation and classroom position (see previous controlled study instead). 

5.2 Body Keypointing Results 
EduSense found 92.2% of student bodies and 99.6% of instructor bodies. This is similar to the 95.5% detection 
accuracy found in our controlled study. Though body detection was accurate, keypoint alignment was worse 
than our controlled study: 59.0% of student and 21.0% of instructor body instances were found to have at least 
one visible keypoint misalignment. We believe this is due to partial (but not full) occlusion of most student 
lower bodies (instructors to a lesser extent, standing behind podiums), which produces noisier (or erroneous) 
results. Similar to our first evaluation, we computed the success rate of finding various body keypoints, with 
results plotted in Figure 10 (student data only). Finally, looking at both student and instructor datasets, coders 
recorded 15 false positive bodies (vs. 11 in our smaller controlled study corpus).  
 We were surprised that our real-world results were comparable to our controlled study, despite operating in 
seemingly much more challenging scenes. However, upon closer inspection, there appeared to be a mitigating 
factor – in real world classrooms, students generally look straight ahead, with the arms resting in front of the 
body. This is in contrast to our controlled study, which had much greater variability in arm pose and head 
direction (by design). So although our real-world environments were more chaotic, with greater body occlusion, 
the poses were also generally easier.  

5.3 Face Landmarking Results 
In student frames, 94.3% of faces were correctly detected, with 4.3% having keypoints partially misaligned and 
10.8% badly misaligned. Instructor faces were correctly found 94.6% of the time, with 10.8% of keypoints partially 
misaligned and 21.2% badly misaligned. The reduced keypointing accuracy for instructors is likely due to the 
distance (i.e., low image resolution) they are from the instructor-facing camera (generally attached to the rear 
wall of classroom), which is equivalent to the back row of seats for students. However, although keypointing 
was noisy for both students and instructors, face detection was strong, despite the fact classroom scenes were 
more complex and busier than in our controlled study. We also found that faces were rarely occluded, even 
partially, in real world scenes, which aided real-world accuracy.  

5.4 Hand Raise Detection & Upper Body Pose Classification 
Overall student hand raise detection accuracy was 96.1%. Unfortunately (and another good motivator for 
automated classroom analytics at our institution), hand raises in our real-world dataset were exceedingly rare. 
We suspected this would be the case, and as such, please refer to the controlled study results for a better estimate 
of performance. Our of our 1797 student body instances, we only found 6 body instances with hand raised 
(representing. less 0.3% of total body instances). Of those six hand raised instances, EduSense correctly labeled 
three, incorrectly labeled three, and missed zero, for an overall true positive accuracy of 50.0%. There was also 
58 false positive hand raised instances (3.8% of total body instances).  Detecting of our three poses (arms at rest, 
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arms closed, hands on face) was 78.4% accurate for students. Instructors fare better, due to reduced occlusion, 
with an accuracy of 88.8%. Note that in our corpus, arms at rest accounted for 88.3% of ground truth poses, with 
the other poses being far less common (hands on face 4.3%; arms closed 3.0%).  

5.5 Mouth Smile and Open Detection 
Only 17.1% of student body instances had the requisite mouth landmarks present for EduSense’s smile detector 
to execute. On these instances, mean smile vs. no smile classification accuracy was 77.1% when compared to 
human labels. The results for instructors are comparable, with only 21.0% of body instances having the required 
facial landmarks. On these instances, mean smile vs. no smile classification accuracy was 72.6% when compared 
to human labels. For mouth open/closed detection, accuracy was stronger – 96.5% – though we note the data is 
heavily skewed to mouths being closed (94.8% of our coded data). Instructor accuracy was slightly worse, 82.3% 
accuracy on the instances with the requisite facial landmarks. We suspect the superior accuracy versus smile 
detection is chiefly because opening one’s mouth is much less subtle than a smile, in which only the corners of 
the lips might move, which at a resolution of 10×3 constitutes a sub-pixel change.  
 We are confident the main obstacle to higher accuracy for mouth state detection is limited camera resolution; 
bodies situated close to a camera had mouths that were around 25×10 pixels in size, while our farthest bodies 
had mouths as small as 10×3 pixels. Such limited resolution does not permit robust facial landmarking, nor 
subsequent mouth classification. Indeed, we note this task was a significant (and subjective) challenge for our 
human coders as well, and thus should be regarded as a preliminary result. 

5.6 Sit vs. Stand Classification  
We found that a vast majority of student lower bodies were occluded, which did not permit our classifier to 
produce a sit/stand classification, and thus we omit these results. Instructors were more visible, though in 33.7% 
of frames their lower bodies were occluded (by a podium or table), precluding prediction. If we only consider 
frames (66.3% of our dataset) where the instructor’s body was fully visible, sit and stand detection was 90.5% 
and 95.2% accurate, respectively.  

5.7 Speech/Silence & Student/Instructor Detection 
We used a slightly different procedure to evaluate our speech detector. Our coders randomly pulled 50 five-
second clips of “speech” and 50 five-second clips of “no speech” (i.e., HVAC hum, papers rustling, distant chatter) 
from recordings of class. These labeled clips were passed, one at a time, into the detector, which outputted a 
prediction. On this audio corpus, accuracy was 82.0%. To evaluate student vs. instructor detection, our coders 
randomly pulled 25 ten-second clips of instructors talking and 25 ten-second clips of one or more students 
talking. These labeled clips were passed, one at a time, into our student vs. instructor speech classifier, which 
was 60.0% accurate at determining the speaker class. This poor result appears to stem from the fact our classifier 
was trained on data from a subset of deployment rooms. Unfortunately, it seems each classroom has a unique 
student-instructor amplitude ratio threshold based on the geometry of the room and placement of the 
camera/microphone. A per-room threshold or model would likely be needed to improve accuracy if only two 
microphones are available (without resorting to more sophisticated methods like speaker identification).  

5.8 Framerate & Latency 
Similar to our controlled study results, we analyzed the runtime performance of EduSense’s main features using 
video recordings of three large classes with 27, 29 and 54 students in the scene. We add these results to Figure 
15, which offers a greater variety in the number of students. Note that EduSense spends up to 84.5 % of its 
compute time parsing the scene (body keypointing and face landmarking) in a large class with 54 students in 
the scene. Overall, we achieve a mean student view processing framerate of between 0.3 and 2.0 FPS. Not shown 
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in Figure 15 is instructor view performance, which is typically 2-3 times faster due to far fewer face landmarks 
to process in the scene (i.e., most often only backs of student heads are visible). 
 When running in real-time, processing live frames from an active classroom, EduSense has an end-to-end 
latency (i.e., real-world state to value saved in database) of roughly 3-5 seconds. The largest contributor of 
latency – approximately 2.5 seconds – comes from our IP cameras, which are propriety and thus largely a black 
box. However, we suspect that buffering, compression and encoding (for both audio and video data) is intensive 
for the low-cost, embedded processor. Next is transmission over a wired network, which is negligible. Then, 
once data has been received by the EduSense backend, it takes between 0.3-2 seconds to process moderate-sized 
classes, as noted previously. Finally, storing the processed data takes another 70-100ms. This does mean that 
our current, proof-of-concept system is less suitable for rapid interventions, such as showing a heatmap of 
student participation to the instructor when hands are raised. However, such latency would be acceptable for 
keeping a running clock of how long the instructor has been speaking without a student question or discussion. 
Fortunately, newer and higher-end IP cameras offer dramatically reduced latency (~0.5 seconds), which should 
bring down EduSense’s end-to-end latency to around 1-2 seconds, which should be sufficient for a wide range 
of realtime feedback and interventions. 

6 END-USER APPLICATIONS  
Our future goal with EduSense is to power a suite of end-user, data-driven applications. Over the next 18 
months, we plan to shift of our focus from the backend system described in this paper, to such frontend 
applications. These, of course, have their own special considerations and development challenges, and will also 
require their own in-depth deployment studies.  
 There are numerous in-class instructional aids that we envision, for example, tracking the elapsed time of 
continuous speech, to help instructors inject lectures with pauses, as well as opportunities for student questions 
and discussion. Similarly, pauses in speech by the instructor, for instance after posing a question to a class, 
should follow the recommended wait time of three seconds, which has been shown to significantly raise student 
participation [49][69]. These timers could pop-up on a carefully designed, low-visual-complexity instructor 
tablet. Other simple cues that could be automatically generated include suggestions to increase movement at 
the front of the class (increasing student attention [55][70]), and modify the ratio of facing the board vs. facing 

 

 
Fig. 16. Preliminary classroom data visualization app.  
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the class. More complex visualizations are possible too, for example, a cumulative heatmap off all student hand 
raised thus far in the lecture, which could facilitate selecting a student who has yet to contribute. Similarly, a 
histogram of the instructor’s gaze could highlight areas of the classroom receiving less visual attention, which 
has been shown to decrease learning [65].  
 In additional to in-class, real-time feedback, we also see great value in after-class and end-of-semester 
reports, that could be generated as PDFs and sent in email. This could provide opportunities to reflect on 
teaching practices [15][27], or perhaps even the efficacy of interventions throughout the semester, such as 
increasing wait time after posing a question. Prior work, using similar, but manually coded data, has already 
shown such reports change instructor behavior and improve teaching efficacy [27][46]. 
 Our open source system also serves as a springboard for more advanced features, for example, models of 
student engagement and attention. For example, prior work has shown that nonverbal communication on the 
teacher side (such as gaze direction [65], gesticulation though hand movement [81], smiling [65], and moving 
around the classroom [55][70] – all features EduSense tracks) can boost student attention and engagement, and 
has been shown to improve learning outcomes and improve likability of the instructor [66].  
 We have started work on one tool, a web-based data visualizer (Figure 16), which serves as a proof of concept. 
This was built using Node.js for communicating with our EduSense backend and handling data, and ECharts 
and React for front end components. Although early in development, it demonstrates the potential of our full 
stack system. We chose to develop this tool first, as the development team desired a way to easily load a class’ 
data and explore the output of the featurization pipeline during iterative development. Instructors can login to 
review their own classes data, which is managed through EduSense’s backend access control mechanisms.  

7 DISCUSSION 
Taken together, our controlled and real classroom studies offer the first comprehensive evaluation of a holistic 
audio- and computer-vision-driven classroom sensing system, offering new insights into the feasibility of 
automated class analytics. A key contribution of this paper is a detailed characterization of all layers of our 
EduSense stack in real classroom use. While many of our features were able to achieve reasonable accuracy 
(e.g., student segmentation ≥95%, upper body pose ~80%, gaze estimation ≤15°, speech detection ≥80%), other 
modules need further improvement to be practical. For some modules, it was a function of limited camera 
resolution (e.g., mouth state detection), while for others innate occlusion challenges will be hard to overcome 
(e.g., sit/stand detection for students). For this reason, we recommend that EduSense only be deployed in 
classroom with maximum front-back length of 8m, and with a sufficiently high mounting point to afford a good 
view of the classroom. 
 We also saw cascading effects, where each layer of our stack introduced some degree of error, which 
accumulated as data moved up the component food chain. For instance, our cameras had limited resolution at 
longer distances, which led to poor student segmentation, which lead to poor facial landmarking, which lead to 
poor smile detection. Even if each layer operates at 90% equivalent accuracy, the end result is at best 65% 
accurate due to compounding errors. As much as possible, we separated sources of error in our analyses to 
elucidate where individual features succeeded and failed.  
 Overall, based on our evaluations, it is clear that all layers of the stack – from sensors to high-level meta 
features – need continued attention from the research community. As accuracy is a continuum, it is always 
challenging to state definitively what level of performance (e.g., 90%, 99%, 99.9% accuracy?) is needed before 
value can be extracted, which is itself not binary. Additionally, each feature of the system almost certainly has 
a different threshold of utility, perhaps ±15° for gaze, but 99.9% for hand raises. In the latter case, false positive 
hand raises likely carry a high penalty with instructors than true negatives. The only way to understand where 
these accuracy-utility thresholds lie is with extensive, longitudinal deployments, which we have planned over 
the next few years with multiple institutions, both universities and high schools, and with a variety of end user 
tools, described in the previous section.  
 Nonetheless, we believe that our system has immediate utility for human observers, augmenting their notes 
with data they cannot easily capture themselves, or provide data at greater frequency. We also envision 
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EduSense as a stepping stone towards the furthering of a university culture that values professional 
development for teaching. It may reduce current barriers such as time and effort needed to collect, process, and 
view fine-grained data that leads to quality feedback on teaching.  

8 CONCLUSION 
We have presented our work on EduSense, a comprehensive classroom sensing system that produces a wide 
variety of theoretically-motivated features, using a distributed array of commodity cameras. We deployed and 
tested our system in a controlled study, as well as real classrooms, quantifying the accuracy of key system 
features in both settings. We believe EduSense is an important step towards the vision of automated classroom 
analytics, which hold the promise of offering a fidelity, scale and temporal resolution, which are impractical 
with the current practice of in-class observers. To further our goal of an extensible platform for classroom 
sensing that others can also build on, EduSense is open sourced and available to the community.  
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