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ABSTRACT

Ocular biometrics in the visible spectrum has emerged as an area of significant research activity. In this
paper, we propose a hybrid convolution-based model, for verifying a pair of periocular images con-
taining the iris. We compose the hybrid model as a combination of a supervised and an unsupervised
convolution, and augment with the well-known geometry-based Root SIFT model. We also compare
the performance of two convolution-based models against each other, as well as, with the baseline
Root SIFT. In the first (unsupervised w.r.t target dataset) convolution based deep learning approach,
we use a stacked convolutional architecture, using external models learned a-priori on external facial
and periocular data, on top of the baseline Root SIFT model applied on the provided data, and apply
different score fusion models. In the second (supervised w.r.t target dataset) approach, we again use a
stacked convolution architecture; but here, we learn the feature vector in a supervised manner. On the
MICHE-II dataset, we obtain an AUROC of 0.946 and 0.981, and EER of 0.092 and 0.066, for the two
models respectively. The hybrid model we propose, which combines these two convolutional neural
networks, outperforms the constituents, in case the both the images arise from the same device type,
but not necessarily so otherwise, obtaining a AUROC of 0.986 and EER of 0.053. We also benchmark
our performance on the standard VISOB database, where we outperform the state of the art methods,
achieving a TPR of 99.5% at a FPR of 0.001%. Given the robustness and significant performance our
methodology, our system can be used in real-life applications with minimal error.

(© 2016 Elsevier Ltd. All rights reserved.

1. Introduction person or not. Computationally, this problem manifests as mea-

suring the similarity between a pair of periocular region images,

Identifying individuals as genuine versus impostors, using
facial features such as matching of the iris, periocular region
and face, have emerged as areas of research interest. As cam-
eras are now becoming ubiquitous in the Internet of things, their
use in the field of biometric based access control applications
is ever increasing, as showcased in the product HYPR [1] and
paper by [2]. Therefore, there is a need for robust, reliable and
accurate smartphone based biometric authentication under con-
strained scenarios. In this paper, following the definition given
by [3], the term periocular means the area surrounding the eye
as well as the eye - i.e. containing the iris and sclera also. The
qualitative problem at hand is of verifying whether a pair of pe-
riocular images taken in the visible spectrum belong to the same
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using a combination of features derived from the iris region and
the surrounding periocular region. The aim is to verify whether
a given pair of images are the same or not, optionally classify-
ing the identity of the subject. The applications of such systems
are manifold, such as performing multimodal authentication on
smartphones discussed by [4].

Over time, computer vision and image processing based
techniques have significantly matured. With mobile phone
cameras becoming a de facto practice for clicking photographs,
CCTV-based surveillance systems gaining prominence, the cost
of digital photographs going down to practically negligible,
and the quality of photos improving significantly with advance-
ment of hardware, using computer vision based techniques for
biometrics is also becoming more prevalent than ever before.
These advancements have also created a different avenue to
solve the problem at our hands.

Several novel approaches have been attempted towards ocu-



lar and periocular biometrics. Early works, such as [5], [3] and
[6], explore the feasibility and use of periocular biometrics. A
number of works were presented in the recent periocular identi-
fication challenge by [7], that provided a new database, namely
the VISOB database. It was observed that deep learning ap-
proaches, such as the works by [8] and [9], were more effective
compared to the others such as [10]. Works using iris segmen-
tation have been conducted in different studies, such as by [11],
[12] and [4]. A recent challenge was organized as MICHE [13]
for iris-based (ocular) biometrics.

In this paper, we propose a hybrid model, that uses two in-
dependent underlying models, to solve the problem at hand. A
preliminary version of our work had appeared in ICPR 2016
[14]. We note that, with deep learning systems such as deep
convolutional neural networks (CNNs - also known as Con-
vNets), it is easy to inspire from the transfer learning paradigm
proposed by [15], and apply a fusion of feature representa-
tions learned externally as well as from the training data at
hand. Since, multiple databases, such as VISOB and MICHE-
II, provide photographs of the ocular and periocular regions,
we propose a CNN based learning for each, leading to two in-
dependent CNN based models. We further note that, the re-
cent work on Openface by [16], has given a method to create a
128-dimensional feature vector for face images for the purpose
of face verification, and empirically observe that this method
works well for the task of verification from partial face images
as well. We, thus, create our proposed hybrid model, as a fu-
sion of the two independent CNN models, the features given by
OpenFace and Root SIFT.

In order to test the performance of the proposed hybrid model
on the MICHE-II dataset, we compare it with a geometry-based
baseline approach, as well as the two underlying CNN based
approaches that constitute the hybrid model. For geometry-
based baseline, we use the well-known Root SIFT method [17].
Root SIFT calculates the image descriptor of the iris images
segmented out of the images of the MICHE-II dataset, and sub-
sequently matches an image with the other using a k-nearest
neighbor approach.

Both the deep learning models are based on CNNs, and both
the models use a stacked layer architecture. In one CNN-based
model, we follow a unsupervised approach, using external a-
priori knowledge along with Transfer Learning techniques. We
train on the VISOB dataset, and obtain a 1, 024-sized feature
vector of the periocular region. We also benchmark this ap-
proach on the VISOB validation dataset. As mentioned ear-
lier, we use the 128-dimensional facial feature vector given by
OpenFace too. We use these two feature vectors, with Root
SIFT, and combine the scores assigned by each of these three
subsystems, to calculate a dissimilarity score, using simple av-
eraging as well as linear regression based techniques. Thus,
with respect to the provided MICHE-II database, this model is
unsupervised in nature.

In the second CNN-based baseline approach, we avoid using
external a-priori knowledge, and solely rely upon the provided
MICHE-II dataset to perform CNN-based deep neural network
learning. This approach is supervised by nature. We pass each
training image through a ConvNet, and subsequently create a
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512-sized feature vector for each training image. For each test
image, we construct its 512-feature vector, and compare this
vector with each of the training vectors using cosine similarity,
to find the best-match image.

Note that, in both CNN-driven baseline models, as well as
in our final hybrid model, we generate data using known aug-
mentation techniques, to further improve the performance of
our system. On the VISOB database, we achieve an EER of
0.0059%, with a a TPR of 99.5% at a FPR of 0.001%. On
the MICHE-II test dataset, we obtain an AUROC of 0.946 and
0.981, and EER of 0.092 and 0.066, for the two CNN-based
baseline models respectively, when testing under the same de-
vice constraint. In the hybrid model, we obtain an EER of 0.057
and AUROC of 0.985. Clearly, the hybrid model, which is es-
sentially a composition of the two CNN-based baseline models,
outperforms all the other models on the MICHE-II dataset, and
delivers the most optimal performance under the same device
constraint. The high performances that our model yields is en-
couraging. We note that, both the baseline CNN models, as well
as our final hybrid model, are practically reasonable candidates
for deploying in real-life applications.

Thus, the contributions of our work are as follows.

e We propose two indepedent CNN-based models and a hy-
brid model to solve the periocular biometric based verifi-
cation problem.

e We create a first CNN-based unsupervised model, that
leverages the benefits of transfer learning, using the VI-
SOB database and OpenFace facial feature identification
system, and combining that with Root SIFT.

e We create a second CNN-based supervised model, that
uses only the images from the provided MICHE-II dataset,
and uses a cosine similarity metric on the derived feature
vector for measuring similarity between image pairs.

e We propose a deep CNN based hybrid model, as a fusion
of (a) the two independent CNN based models, (b) the set
of features given by OpenFace and (c) Root SIFT.

e We provide an empirical comparison of the two CNN
baselines between each other, as well as with a baseline
Root SIFT model. We observe the second (supervised)
CNN based model to outperform the first. Both the mod-
els significantly outperform the Root SIFT model.

e We examine the performance of our hybrid model, with
respect to three baseline models on standard databases,
namely Root SIFT, and the two CNN based models.

e The proposed hybrid model, outperforms the two indepen-
dent CNN based models as well as the baseline Root SIFT
model. We validate this by testing in settings where the
training and test images stem from the same device type.

The rest of the paper is as follows. The literature is covered
in Section 2. The details of our methodology, including the
design principles and the models, are presented in Section 3.
Section 4 explores the outcome of applying our methodology
on the target dataset. Finally, we provide a brief discussion in
Section 5 and conclude in Section 6.



2. Related Work

As the computer vision and image processing techniques
have matured with time, a number of novel approaches towards
the ocular and periocular biometrics problem (and closely re-
lated problems) have been recently introduced by several re-
searchers. Some of these works have attempted to address the
problem by investigating the iris, while others have attempted to
inspect the periocular regions also, that is, the regions that also
surround the eye. Recently [18] reviewed the research progress
in the area and discussed existing algorithms and the limita-
tions of each of the biometric traits and information fusion ap-
proaches.

Early works, such as [5], [19] and [3], establish the feasi-
bility of using periocular images for biometric identification.
They use texture and point operators to extract global and local
information from the periocular region, and use these features
to represent and match the region. They study the impact of
several factors in periocular verification, such as the effective-
ness of incorporating and disguising eyebrows in the feature set,
the effect of masking the iris and the eye region, the effects of
pose validation and occlusion, and the effectiveness of using a
fusion of face and periocular biometrics.

[6] evaluate the utility of the periocular region appearance
cues for biometric identification. They demonstrate the effec-
tiveness of periocular biometrics to be at par with face-based
recognition. They divide the periocular image into salient
patches using local appearance based features, and compute
histograms of texture and color from each patch. They match
the images by computing distances between the features.

In a recent periocular identification challenge [7], a database
with the title VISOB was provided, and a number of approaches
of identifying individuals were presented, where the images
were collected in the visible spectra under different lighting
conditions, namely daylight, dim light and office lighting, and
different devices, namely Oppo mobile phones, Samsung mo-
bile phones and Apple iPhones. Several interesting works
emerged in the challenge.

With the VISOB dataset, [8] propose to extract texture fea-
tures from periocular images using maximum response filters,
and subsequently classify these features using deeply coupled
auto-encoders. They model with a 4-layer deep auto-encoder
for performing unsupervised feature learning, and finally per-
form a supervised softmax based verification. [9] propose
a framework, based upon collaboratively represented features
from deep sparse filtering. Some other works, with lesser
yields, also have been proposed, such as the 2-phase approach
by [10] that uses a multinomial Bayesian Learning followed by
Dense SIFT. All these works attempt to use the minimum dis-
tance between the enrollment class and probe class, and use
this distance to assign a classification label of genuine versus
impostor.

Pertaining to the task of iris segmentation, [12] design an un-
supervised iris defects detection method based on the underly-
ing multispectral spatial probabilistic iris textural model. They
perform adaptive thresholding, that would be effective for high
resolution mobile device measurements, in the visible and near-
infrared spectrum. Their model is based upon adaptive param-
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eter learning for iris texture, and checking for iris reflections
using recursive prediction analysis techniques. For iris recogni-
tion in the visible spectrum, [11] describes an integrated scheme
for noisy iris recognition in adverse conditions. They perform
iris matching by combining local features, such as linear binary
patterns (LBPs) and discriminable textons (BLOBs). They re-
fine their techniques ad hoc, to keep their approach amenable to
work with images captures in varying visible light conditions,
as well as noises arising from distance, hardware limitations
such as resolution, and scarce user collaboration such as blur-
ring, off-axis iris, and occlusions by eyelids and eyelashes.

For mobile devices in particular, [4] propose a system, that
combines the recognition of user’s iris and a image forensic
field technique for camera source identification, namely sensor
pattern noise of user devices, for authentication of users. They
perform fusion of the multimodal inputs at two levels - the fea-
ture level and at score level. For feature level fusion, concate-
nate the feature vectors obtained from their sensor recognition
and iris recognition modules, and then perform feature selec-
tion. For score level fusion, they compute the distance matrices
for the two recognition modules, and apply different score nor-
malization techniques. [20] also propose a multimodal recog-
nition. They perform fusion of face and iris features, for the
purpose of recognition.

A recent challenge was also organized as MICHE-I [13] for
iris-based (ocular) biometrics, and a subsequent follow-up or-
ganized as part the ICPR 2016 Conference presented in [21].
The current paper uses the MICHE-II data released as part
of the this challenge. The novelty in our work, in context
of the prior literature, is in the proposed hybrid CNN model
that (a) encompasses (i) unsupervised transfer learning using a-
priori knowledge present in the externally created related CNN
feature vectors, and (ii) supervised feature vector learning on
the provided MICHE data training set, (b) augments that with
the traditional geometry-based Root SIFT model, and (c) an
augmentation of this by a benchmarking across the two state-
of-the-art databases, namely the VISOB and the MICHE-II
databases.

3. Methodology

For the purpose of verifying individuals, we explore the fol-
lowing algorithms encompassing the task of iris and periocu-
lar verification. We propose a baseline Root SIFT method for
iris verification, a Deep Learning based model for periocular
verification and two further subsequent models that learn dis-
criminant appearance based features from the periocular region
for verification. Building on the insights of state of the art fa-
cial recognition models such as [22], it is seen that supervised
methods have a clear advantage over unsupervised ones. As
showcased in [15], training and testing across different distri-
butions can degrade performance considerably. However, fit-
ting a model to a small dataset decreases it’s robustness and
generalization to other datasets. We therefore investigate both
these methods - learning a supervised and unsupervised verifi-
cation metric. We test our results on the VISOB and MICHE-II
databases.



In the first model, we aim at learning an unsupervised metric,
that generalizes well across several datasets. In this setting, no
training whatsoever is performed on the MICHE-II database. In
the second model, we employ a supervised learning paradigm
that learns feature representation for comparison and verifica-
tion on the MICHE-II dataset.

3.1. Baseline Model

Inspired by SIFT based models for ocular biometrics in the
visible spectrum such as [7], [10] and [23], we make use of
Dense SIFT keypoints for matching irises. Iris verification is
comprised of two main stages: iris segmentation and feature
matching. For the first task, the iris is extracted out of the im-
age using the segmentation algorithm described by [12]. The
algorithm provides us with the segmented and normalized iris
image of dimensions 600x 100 pixels along with a defects mask.
We first overlay the segmented iris image with the binary mask
to get the iris image rid of any occlusions. We then compute
Dense color Root SIFT descriptors from the RGB channels,
as proposed by [17], which gives us keypoints with identical
size and orientation. The advantage of Root SIFT over tradi-
tional SIFT given by [24] is that it employs a Hellinger kernel
instead of the standard Euclidean distance to measure the simi-
larity between SIFT descriptors. Matching between descriptors
is performed by comparing each local extrema using a nearest
neighbor matcher given by [25]. The dissimilarity score d is
defined as:

|Matches| ) o

d= (1 -
min(|KeyPts_imgl|,|KeyPts_img2|)

In equation 1, |KeyPts| describes the number of SIFT keypoints
detected in the respective images, and [Matches| defines the
number of keypoint matches returned by the nearest neighbor
matcher.

3.2. VisobNet

Deep learning systems have achieved state of the art accu-
racies in face recognition tasks. However, they require large a
large training database to learn their models. Alternatively, the
use of transfer learning described by [15] is often used to solve
this problem. Here the feature representation is learned on an
external dataset. Motivated by the success of such approaches,
we employ a similar approach in which we train our model on
a relatively larger database and test on a more challenging one.
The model automatically learns appearance-based features by
using a Deep Convolutional Neural network. We train our CNN
on a multi-class recognition task, namely to classify the identity
of the periocular image. The overall architecture is depicted in
Table 1.

First, the periocular region is extracted from the given image
by creating a rough bounding box around the eye, the dimension
of which are given as a function of the iris center and radius re-
turned by the unsupervised iris segmentation proposed by [12].
This RGB (3 channel) periocular image is re-sized to 32 pix-
els x 48 pixels and given as input to the convolution layer 1.
We use a convolution kernel of size 3 X 3 in all the convolution
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layers and max-pooling after two consecutive convolution lay-
ers. This makes the output of the convolution network robust
to small errors and translations. We also use dropout layers for
regularization to encourage sparsity and prevent over-fitting.

Finally, the last two layers of the network are fully connected
to capture the correlation between the features captured in dif-
ferent parts of the eye. The dense layers in Table 1 represent
the fully connected layers. We use ReLLU proposed by [26] as
the activation function except in the last layer where we use a
softmax classifier, which produces a distribution over the class
labels. The goal of training is to maximize the probability of
the correct label. This is achieved by minimizing the cross-
entropy loss for each training sample. We train the CNN using
Stochastic Gradient Descent (SGD) [27] with standard back-
propagation and Momentum (set to 0.9) [28]. We train the
model with a learning rate of 0.01 for all layers, and a batch
size of 256 for 1,500 epochs. We also employ real-time data
augmentation to increase the samples for training. We use the
Keras library developed by [29] for training our model.

We take the output of the Fully Connected layer 1 to get the
1, 024-dimensional feature vector of the periocular image. This
representation is in contrast to traditional representations pro-
posed in literature that normally pool descriptors, and use it as
input to a classifier. We investigate the use of both a supervised
and unsupervised verification metric to test the robustness of
our ConvNet. For our unsupervised similarity metric, we take
the cosine similarity between two feature vectors of the peri-
ocular images. For the supervised metric, the probability of
classification of the probe class to the enrollment class is used
to classify the image and assign it a similarity (or dissimilarity)
score.

3.3. Model 1

Figure 1 illustrates our proposed framework for Model 1.
The model consists of three integral parts for the purpose of
verification, namely OpenFace, Visobnet and RootSIFT, as de-
scribed below.

3.3.1. OpenFace

OpenFace proposed by [16] is a general purpose face recog-
nition library that is well-suited for mobile scenarios. Given
a facial image, it outputs a 128-dimensional feature vector of
that image. Although, it is crafted for face verification, we find
it to perform well for the task of verification from partial face
images as well. OpenFace takes two facial images (or partial
face images) as inputs and subsequently outputs the predicted
similarity score of two images by computing the squared L2
distance between their representations. Since the representa-
tions are on the unit hypersphere, the scores range from 0 to
4.0. We then normalize the score to a range from 0 to 1 to get
the dissimilarity score. As we do not tune OpenFace for our tar-
get database, it helps us understand to what extent can existing
state-of-the art methods for face verification be employed for
the task of ocular biometrics.

3.3.2. VisobNet
This is the ConvNet described in Section 3.2. We use it as a
part of Model 1 in an unsupervised manner, that is, we calculate
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Fig. 1. Schematic representation of proposed Model 1.

the cosine similarity between the pair of output feature repre-
sentations obtained by passing the periocular image though the
feed forward network.

3.3.3. RootSIFT

This is the Root SIFT based baseline model, described in
Section 3.1. The dissimilarity score for a given iris pair is used
for verification purposes.

3.3.4. Score Fusion

We first normalize the scores to bring them within the fixed
numerical range of [0,1]. We then employ two approaches for
score fusion. In the first approach we simply take an average
of all the scores. Hence, the model and dissimilarity metric
remains completely unsupervised. In the second approach we
train a linear regressor on 5% of the total image pairs of the
target database. Note that, this is a supervised approach, car-
ried out to compare its results with the unsupervised verification
metric.

3.4. Model 2

In this model we employ a supervised CNN to learn discrim-
inative feature representations from the target dataset, rather
than opting for transfer learning based approaches. As noted
earlier, in the domain of face verification and other recognition
tasks, supervised methods tend to show a clear advantage over
unsupervised ones. We therefore, employ this model with the
hope of contrasting it’s performance with our proposed unsu-
pervised Model 1. The details of our CNN Model are captured
in Table 2. The advantage of employing appearance based Con-
volution Neural Network is that it is able to visualize the iris
from periocular region on the fly without prior need for seg-
mentation. As our target dataset contains only a few over 3, 000
images, we resort to data augmentation to increase the robust-
ness and generality of our model. For data augmentation, we
rotate the image between 0 to 30 degrees, randomly shift the im-
ages horizontally and vertically by 0.1 of their total width and

height respectively. We also flip the images horizontally and
also zoom it in between 0.7 to 1.3 times it’s original size. The
CNN model details are similar to Section 3.2 in terms of learn-
ing algorithm, rates and kernel sizes, with the only difference
being that we train this model for a 1,000 epochs because it is
shallower in comparison and hence converges faster. The input
of the model is a re-sized RGB image (we pass the whole im-
age without prior segmentation) having dimensions of 64 x 96,
and it’s output is a 512 dimensional feature vector. Similar to
Section 3.2 we employ a cosine similarity to get the similarity
between two feature vectors.

3.5. Hybrid Model

This model is a amalgamation of our unsupervised and super-
vised model. Here the score of Model 2 is used in conjunction
with the score of Model 1 (average of all scores in Model 1) to
compute a fused dissimilarity score. The fusion is computed as
the average of the two scores from each model. We choose this
approach due to its generality and simplicity.

4. Evaluation

We take the MICHE-II dataset [13] as the target database for
evaluating the performance of the baseline RootSIFT model and
the two proposed CNN-based models. We also evaluate the ac-
curacy of VisobNet on the VISOB database [7]. In this section,
we first describe the datasets used for evaluation of different
models, then we present our detailed evaluation and compari-
son with state-of-the art systems, followed by an analysis of our
results.

For experiments, we use a hardware configuration of In-
tel Pentium CPU 2020M @ 2.40 GHz and 4 GB RAM. Our
methodology for Model 1 achieves an execution time of ap-
proximately 1.7 seconds for inference and 130 seconds to run
the externally provided segmentation method for a given image
pair. As our Model 2 does not require any prior segmentation,
it achieves a smaller execution time of 0.6 seconds for verifying
a given image pair.



4.1. Data Description

We evaluate the performance of our system on the VISOB
and MICHE-II datasets.

The MICHE-II dataset is an iris biometric dataset captured
under uncontrolled settings using mobile devices in the visi-
ble spectrum. Figure 2 depicts sample images taken from the
database. It is captured under the same paradigm as MICHE-I
with respect to the environment, mode of capture, etc. Its train-
ing dataset comprises of over 3,000 images, across all environ-
ments (across 2 different lighting conditions), devices (across
3 different devices) and eyes (left/right), and has 75 distinct la-
bels (unique subjects), while its test dataset comprises of 120
images of the left and the right eyes combined captured using
two devices, namely Samsung Galaxy S4 and Apple iPhone 5.
While some of the subjects present in it are part of the MICHE-
II training database, most of its subjects are new and are not a
part of the training dataset.

The VISOB dataset is a large scale database to test the
performance of mobile ocular biometric schemes in visible
spectrum. Figure 3 showcases sample images taken from the
database. It consists of periocular eye images from 550 healthy
adult volunteers using three different phones (Samsung, [Phone
and Oppo) and three different lighting conditions (Office, Day
and Dim Light). It captures the images across two Visits. We
concern ourselves with the publicly available Visit 1 dataset,
which was provided to the contestants of the ICIP 2016 VISOB
Challenge for evaluation and reporting. The Visit 1 database is
a closed system having a total of 48250 enrollment images and
46797 verification images. All the images provided in VISOB
are preprocessed and cropped to retain only the periocular re-
gion of size 240 x 160 using a Viola-Jones based eye detector
discussed in [7].

Due to the relatively larger size and preprocessed periocu-
lar images, VISOB makes a good training dataset for CNN’s
(also providing a very large verification database for testing).
However, MICHE-II test-dataset introduces a more challeng-
ing, open, unconstrained yet smaller dataset making it ideal as
our target database for testing. Therefore, we train the pro-
posed VisobNet on the enrollment database of VISOB and test
it’s performance as a supervised metric on the VISOB verifica-
tion database, and as an unsupervised verification metric with
respect to MICHE-II test dataset. As noted by [9], VISOB
database fails to provide fixed number of enrollment samples
at a per device and per environment setting. We therefore, train
on all the enrollment images together, regardless of their envi-
ronment or device of capture. Therefore, our deep learning net-
work is able to leverage better hierarchical and discriminative
features from a much more vast and diverse enrollment dataset.

For Model 2, we train it’s ConvNet as a recognition system
on 80% of the MICHE-II training dataset and use the remaining
20% for validation. For testing the Baseline Root SIFT model,
Model 1 and Model 2, we use MICHE-II test dataset as the
target database for evaluation, for reasons discussed above.

4.2. Model Evaluation

We present the results of the proposed schemes on the VI-
SOB and MICHE-II test dataset. The results are represented
using Receiver Operating Curves (ROC) and Equal Error Rates.

Fig. 2. Sample Images from the MICHE-II Database

4.2.1. Evaluating on the VISOB dataset

We present the results of VisobNet for periocular recognition
on the VISOB database. Similar to [8], experiments are carried
out by training the CNN on the enrollment database and test-
ing on the validation (verification) database. Since, the VISOB
database is a closed ID system, we take the probability of the
probe class to the enrollment class to classify the images and
assign it a similarity (or dissimilarity) score.

We evaluate it’s performance of periocular recognition by
calculating it’s rank one accuracies across different devices and
lighting condition, as depicted in Table 3. Figure 12 depicts the
Cumulative Match curves of the VISOB verification database.
Our ConvNet achieves a rank one accuracy of 93.49% on the
VISOB database, which is much higher than the average and
best case accuracy of 63.98% and 79.49% reported by [10] on
the same database.

For the task of verification, we output the probability distri-
butions of a probe class across all the enrollment classes. We
also compare the algorithms performance with sate-of-the art
algorithms proposed by [8] and [9] in Table 4. The ROC perfor-
mance of the proposed method for the images captured across
three different devices -Samsung, Oppo and I-Phone, each with
three different lighting conditions - Day, Dim and Office, for
each eye - Left and Right, is depicted in Figures 13, 14 and
15 respectively. It can be observed that our system beats the
current state-of-the art by a considerable margin. Across all de-
vices and environments, we achieve a True Positive Rate (TPR)
of 99.5% at a False Positive Rate (FPR) of 0.001%. We clearly
out-perform the best performance of the front-runners of the
ICIP VISOB challenge [7]. [9] and [8], who achieve a best case
accuracy of 97.56% and 93.98%. Our system achieves a con-
siderably low Equal Error Rate (EER) of 0.0059%, which goes
on to prove it’s robustness and reliability.

The considerably high accuracy achieved by VisobNet on the
VISOB verification database can be attributed to the following:

e All the images are cropped and preprocessed therefore
aligning all the periocular images and making feature rep-
resentation easier.

e The VISOB database is a closed ID system, that is, the
probe is always one of the known identities in the database.

e The fact that we train the ConvNet from all the enrollment
images across different devices and environments makes
the feature representation richer and more robust.

e The biggest contributor to the very high True positive Rate
at a low False Acceptance Rate, is the use of the softmax
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Fig. 3. Sample Images from the VISOB Database

function that outputs the normalized probabilities for each
class, via a cross-entropy loss function that minimizes the
negative log likelihood of the correct class. Also the use
of RelLU as the activation function, makes the ConvNet
produce highly non-linear and sparse features.

The advantages of using a supervised verification metric as de-
scribed above is that it achieves a very high performance across
devices and environments, without the need for customizing
features for each scenario. However, the given metric may de-
grade in an Open World system, or systems where there are
considerably less samples for a given class. Also, the addition
of new classes to the network would require to fine-tune the
parameters to incorporate them. Therefore, we also explore an
unsupervised verification metric, in the form of inner product
between two feature representations, to evaluate the generality
of VisobNet. For this purpose, we test it one the MICHE-II test
dataset, the results of which are given in Section 4.2.2.

4.2.2. Evaluation on MICHE-II dataset

We evaluate the performance of the baseline Root SIFT
method, OpenFace, VisobNet, Model 1, Model 2 and the Hy-
brid Model on the MICHE-II test dataset. A test verification
process is carried out, by comparing each test dataset image
with one another, in all possible combinations, under each of
the above settings. We perform empirical evaluation of our
models under the following paradigms.

Same-Eye versus Cross-Eye: Under the same-eye
paradigm, we hypothesize that the left and right iris of a given
person are different from each other. Hence, we compare the
Left Eye Images with Left Eye Images and Right Eye Images
with Right Eye Images. Under the cross-eye paradigm, we ig-
nore the possibility that left and right eyes could produce differ-
ent features, and merge all the eye images for the comparison.
The rationale behind making this apparently counter-intuitive
assumption are to exploit the following. (a) Data augmenta-
tion with horizontal flip: In the data augmentation process dur-
ing the deep CNN training, we also perform horizontal flip of
the images, thereby the left and right eyes also getting inter-
changed” in the learning process. (b) Feature similarity: In the
given image dataset features, only minor dissimilarities exist
between left and right eye images of most of the given persons.
We observe similar performances in these two paradigms.

Same-Device versus Cross-Device: Under the same-device
paradigm, we compare images taken from the same device type
with each other. That is, we compare images taken from Sam-
sung Galaxy S4 only with other images taken from Samsung
Galaxy S4, and images taken from Apple iPhone 5 only with

other images taken from Apple iPhone 5. Under the cross-
device paradigm, we compare between the images agnostic
of the device type from which any of the images were taken
from. Note that, we experiment with both the same-eye (SE)
and cross-eye (CE) with the same-device (SD) and cross-device
(CD) paradigms, and observe similar performance outcomes
between same-eye and cross-eye testing, whereas there is a
stark improvement in results when migrating from cross-device
to same-device paradigm. This can be seen in Tables 5 and 6
which correspond to EER and AUROC respectively for the var-
ious methods. Here, Model 1 LR refers to the Linear Regres-
sion based supervised score fusion technique, as opposed to EQ
which refers to the unsupervised average based score fusion.
Figures 4, 5, 6, 7, 8, 9 and 10 showcase the ROC curves of the
various methods discussed in Section 3. In these figures, the
label Default corresponds to the CD_SE paradigm, and Same
Device corresponds to the SD_SE paradigm. For our hybrid
model we achieve an EER of 0.352 and 0.057, and AUROC of
0.736 and 0.985 in the CD_SE and SD_SE paradigms respec-
tively. The FAR-FRR Curve for this can be found in Figure 11.
Thus, the best performance of our proposed scheme is achieved
by the hybrid model on the SD_SE paradigm. It should also be
noted, that the hybrid model showcases similar performances
for both left and right periocular images.

5. Discussion

As shown in Section 4, our system delivers a stark improve-
ment over the baseline approach and current state of the art
algorithms. This can be attributed to the use of deep learn-
ing neural network models. While supervised models clearly
outperform the unsupervised ones, it is interesting to note that
unsupervised models learned on different (external) datasets
also provide reasonable accuracy, when applied on the current
dataset. One interesting observation is that OpenFace, a model
created for facial recognition, performs reasonably well on the
MICHE-II test database, where only partial faces are visible.
The success of such models, opens further avenues such as us-
ing of pre-trained models - trained on a larger (external) dataset,
albeit for a slightly different task such as face or periocular
recognition, and fine-tuning its last layers for addressing the
complexities of the target dataset; thus maintaining the general-
ity and robustness of the system, and at the same time fitting the
model better for the target dataset. It will also be of interest to
explore feature embeddings that directly correspond to image
similarity, such as the Weighted X distance.
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Table 1. Our architecture for Visobnet features. The output size is given by

filtersxrowsxcols.
Layer Output Shape | Params
convolution2d_1 (32, 32, 48) 896
activation_1 (32, 32, 48) 0
convolution2d_2 (32, 30, 46) 9248
activation_2 (32, 30, 46) 0
maxpooling2d_1 (32, 15, 23) 0
dropout_1 (32, 15, 23) 0
convolution2d_3 (64, 15, 23) 18496
activation_3 (64, 15, 23) 0
convolution2d_4 (64, 13,21) 36928
activation_4 (64, 13, 21) 0
maxpooling2d_2 (64, 6, 10) 0
dropout_2 (64, 6, 10) 0
convolution2d_5 (128, 6, 10) 73856
activation_5 (128, 6, 10) 0
convolution2d_6 (128, 4, 8) 147584
activation_6 (128, 4, 8) 0
maxpooling2d_3 (128, 2, 4) 0
dropout_3 (128,2,4) 0
flatten_1 (1024) 0
dense_1 (1024) 1049600
activation_7 (1024) 0
dropout_4 (1024) 0
dense_2 (586) 600650
activation_8 (586) 0
Total params 1937258
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Fig. 9. Visobnet ROC on MICHE-II

Table 2. Our architecture for Model 2-based CNN. The output size is given

by filtersxrowsxcols.

Layer Output Shape | Params
convolution2d_1 (32, 64, 96) 896
activation_1 (32, 64, 96) 0
convolution2d_2 (32, 62,94) 9248
activation_2 (32,62, 94) 0
maxpooling2d_1 (32, 31, 47) 0
dropout_1 (32, 31, 47) 0
convolution2d_3 (64, 31, 47) 18496
activation_3 (64, 31, 47) 0
convolution2d_4 (64, 29, 45) 36928
activation_4 (64, 29, 45) 0
maxpooling2d_2 (64, 14, 22) 0
dropout_2 (64, 14, 22) 0
flatten_1 (19712) 0
dense_1 (512) 10093056
activation_5 (512) 0
dropout_3 (512) 0
dense 2 (75) 38475
activation_6 (75) 0
Total params | 10197099
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and lighting condition

Phone Condition | Left | Right
Office 90.45 | 91.53

Samsung | Day 92.44 | 92.97
Dim 93.12 | 93.61
Office 93.54 | 93.89

IPhone Day 95.98 | 94.82
Dim 96.09 | 96.14
Office 90.79 | 90.23

Oppo Day 94.21 | 94.81
Dim 96.31 | 96.15

6. Conclusion

In this paper, we proposed a hybrid convolution-based
deep learning model, that combines a stacked unsuper-
vised convolution-based model with a stacked supervised
convolution-based model, and augments that with Root SIFT,
for identifying an individual from a periocular image. This was
obtained by training the underlying CNNs on a given set of peri-
ocular images as part of the learning phase, using transfer learn-
ing for using the features learned on external datasets for the
case of the unsupervised convolutional network, and verifying
a pair of images during the testing phase.

Our first unsupervised model, exploited a-priori knowl-
edge to perform transfer learning, stemming from (a) a 128-
dimensional facial feature vector exposed by OpenFace, and
(b) a 1,024 dimensional feature vector of the periocular re-

gion trained on VISOB database. It obtained similarity scores
for each source-target pair using each of the two methods,
used Root SIFT on the provided (MICHE-II) test data to ob-
tain a dissimilarity score, and finally applied an average-based
and a linear regression based score fusion technique to iden-
tify the best-matching source-target pair. The second model,
on the other hand, used a 4-layer stacked convolution network
followed by a 512-dimensional feature vector in a supervised
learning paradigm, and used cosine similarity for testing pur-
poses. VisobNet of the first model achieved a TPR of 99.5% at
a FPR of 0.001% on the VISOB database, over all three smart-
phones and capture conditions. With respect to the MICHE-
IT test database, the first model produces a best-case AUROC
of 0.956 and EER of 0.092, and the second produces a best-
case AUROC of 0.981 and EER of 0.066, respectively. Both
the ConvNets significantly outperform the baseline Root SIFT
method, which yields a best-case performance of 0.453 and
EER of 0.554. Model 2 outperforms the other models in a
cross-device scenario, achieving an AUROC of 0.827 and EER
of 0.271. The final model, a hybrid of the two convolution mod-
els with Root SIFT augmentation, is observed to deliver the best
performance, under the constraint that the training and test data
arise from the same device type, achieving an AUROC of 0.986
and EER of 0.053. The encouraging performance delivered by
our approach, signify the potential of these models as candi-
dates for deployment in real-life applications.
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Table 4. Verification performance (TPR @ FPR = 1073) for different phones and capture conditions. Here BBSIF is Block BSIF, BHoG is to Block HoG,
BSIF is Binary Statistical Image Features, HoG is Histogram of Gradients, LPQ is Local phase Quantization, DCA is Deeply Coupled Auto-encoders and

DSF is Deep Sparse Filters

TPR(%)
Feature | iPhone Oppo Samsung iPhone Oppo Samsung iPhone Oppo Samsung
Left | Right | Left T Right [ Left | Right | Left [ Right [ Left [ Right [ Left [ Right [ Left [ Right | Left [ Right | Left [ Right
Capture Condition : Day Light Capture Condition : Dim Light Capture Condition : Office Light
BBSIF 45.77 42.69 46.22 49.40 47.63 48.56 40.05 3593 26.62 51.77 44.44 48.56 29.47 30.71 26.62 23.30 24.45 30.27
BHoG | 0.11 0.18 | 035 | 051 0.09 | 0.6 .19 107 | 049 | 054 | 022 | 0.6 | 036 | 054 | 049 | 077 | 0.10 | 051
BSIF 60.11 61.52 54.40 53.45 54.39 62.93 43.74 48.61 28.00 56.76 54.82 62.93 42.14 44.45 28.00 30.68 34.29 39.64
HoG | 0.04 | 003 | 0.9 | 0.18 | 006 | 0.13 | 041 053 | 032 | 030 | 036 | 013 | 028 | 033 | 032 | 037 | 024 | 034
LPQ 1.65 1.99 2.75 2.65 1.41 9.88 6.70 7.73 2.88 5.15 8.70 9.88 3.53 2.71 2.88 3.95 1.96 1.73
DCA | 9204 | 91.34 | 9255 | 92.70 | 93.14 | 92.29 | 92.15 | 92.92 | 93.85 | 93.98 | 9338 | 92.64 | 88.83 | 90.08 | 93.57 | 9249 | 89.94 | 90.63
DSF | 93.04 | 8626 | 96.64 | 97.56 | 9022 | 95.03 | 89.63 | 89.47 | 8749 | 87.08 | 91.06 | 93.18 | 88.62 | 86.62 | 87.49 | 80.00 | 79.72 | 90.92
Our 99.75 99.67 99.53 99.77 99.27 99.14 99.87 99.76 99.85 99.84 99.24 99.71 99.55 99.79 99.27 99.18 98.62 98.89
Table 5. Equal Error Rate on MICHE-II (101 K. A hu.J 3 A. Bose, S N‘agz‘l'r, K. Dey, F..Barbhu1?fg, Is'u"re. User authen.tlj
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